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Objective

• Linear programming (LP) problems occur in a diverse range of real-life
applications in economic analysis and planning, operations research, computer
science, medicine, and engineering.

• These prolems, it is known that nay minima occur at the vertices of the feasible
region and can be determined through a “brute-force” or exhaustive approach
by evaluating the objective function at all the vertices of the feasible region.

• The number of variables involved in practical LP problem is often vary large and
an exhaustive approach would entail a considerable amount of computation.

• In 1947, Dantzig developed a method for solving LP problems known as the
simplex method. He solved this problem because he came to the class late and
thought an unsolved problem on a blackboard was homework.

• Named one of the “Top 10 algorithms of the 20th century” by Computing in
Science & Engineering magazine. Full list at:
https://www.siam.org/pdf/news/637.pdf

• The simplex method has been the primary method for solving LP problems
since its introduction. 2/68

https://www.siam.org/pdf/news/637.pdf


Contents

General Properties

Feasible Descent Directions

Finding a Vertex

Vertex Minimizers

Simplex Method: Nondegenerate

3/68



General Constrained Optimization Problem

A general constrained optimization problems:

minimize
x

f(x)

subject to gi(x) ≤ 0, for i = 1, 2, . . . , q

hj(x) = 0, for j = 1, 2, . . . , p

xLk
≤ xk ≤ xUk

, for k = 1, 2, . . . , n,

where xL and xU are lower bound and upper bound, respectively.

Regular point
A point x is called a regular point of the equality constraints if x satisfies hj(x) = 0

and column vector ∇h(x) are linearly independent.

• x is a regular point of the equality constraints if it is a solution of hj(x) = 0

and the Jacobian J =
[
∇h1

(x) ∇h2
(x), . . . ,∇hp (x)

]T
has full row rank.

4/68



General Constrained Optimization Problem

Consider the equality constraints

−x1 + x3 − 1 = 0

x2
1 + x2

2 − 2x1 = 0

The Jacobian of the constraints is given by

J =

[
−1 0 1

2x1 − 2 2x2 0

]

• The Jacobian has rank 2 except x =
[
1 0 x3

]T
• x =

[
1 0 x3

]T
does not satisfy the second constraint.

• Any points satisfying both constraints is regular.
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General Constrained Optimization Problem: Inequality con-
straints

Consider the constraints

g1(x) ≤ 0, g2(x) ≤ 0, · · · gq(x) ≤ 0

• For the feasible point x, these inequalities can be divided into two classes.

• The set of constraints with gi(x) = 0 are called active constraints.

• The set of constraints with gi(x) < 0 is called inactive constraints.

• We can convert inequality constraints into equality constraints by adding slack
variable s ≥ 0 as

ĝi(x) = gi(x) + si = 0
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General Properties: Formulation of LP problems

The standard-form LP problem:

minimize
x

cTx (4.1a)

subject to Ax = b (4.1b)

x ≥ 0 (4.1c)

where c ∈ Rn×1 with c ̸= 0, A ∈ Rp×n , and b ∈ Rp×1 are given. We assume that A
is of full row rank, i.e., rank(A) = p. To be meaningful LP problem, full row rank in A

implies that p < n.

• For n = 2, cTx = β represents a linea and cTx = β for β = β1, β2, . . . ,

represents a family of parallel lines.

• The normal of these lines is c, and the vector c is often referred to as the
normal vector of the objective function.
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General Properties: Formulation of LP problems

1 2

2

3

0

c

cT x = −4

cT x = −6

x1

x2
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General Properties

Another LP problem, which is often encountered in practice, involves minimizing a
linear function subject to inequality constraints, i.e.,

minimize
x

cTx (4.2a)

subject to Ax ≤ b (4.2b)

where c ∈ Rn×1 with c ̸= 0, A ∈ Rp×n , and b ∈ Rp×1 are given. This will be referred
to as the alternative-form LP problem hereafter. If we let

A =


aT
1

aT
2

...
aT
p

 , b =


b1

b2
...
bp

 , then aTi x ≤ bi, for i = 1, 2, . . . , p

where vector ai is the normal of the ith inequality constraint, and A is usually
referred to as the constraint matrix.
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General Properties

• by introducing a p-dimensional slack vector variable s, the LP problem can be
reformaulated as

Ax+ s = b for s ≥ 0

The vector variable x can be decomposed as

x = x′ − x′′ with x′ ≥ 0 with x′′ ≥ 0

Hence if we let

x̂ =
[
x′ x′′ s

]T
, ĉ =

[
c −c 0

]T
, Â =

[
A −A Ip

]
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General Properties

• The non-standard LP can be reformulated as a standard-form LP problem , the
increase in problem size leasd to reduced computational efficiency which can
sometimes be a serious problem particularly when the number of inequality
constraints is large.

• To solve each form LP will be described separately to enable us to solve each of
these problems directly without the need of converting the one form into the
other.
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General Properties: KKT Conditions

• Lagrange Multipliers use to convert a constrained problem into a form such that
the derivative test of an unconstrained problem can be applied.

• To find the maximum or minimum of a function f(x) subjected to the equality
constraint g(x) = 0, we can introduce the Lagrangian function

L(x,λ) = f(x) + λT g(x) = f(x) +

p∑
i=1

λiai(x)

• At the extremal point we need

∇xL(x∗,λ∗) = 0

∇λL(x∗,λ∗) = 0

• The Lagrangian incorporates the constraints into a modified objective function
in such a way that a constrained minimizer x∗ is connected to an unconstrainted
minimizer {x∗,λ∗} for the augmented objective function L(x,λ)
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General Properties: KKT Conditions

minimize f(x) =
1

2
xTHx+ xTp

subject to Ax = b

H > 0 and A ∈ Rp×n has full row rank.

L(x,λ) =
1

2
xTHx+ xT p+ λT (Ax− b)

∇L(x,λ) =
[
Hx+ p+ATλ

Ax− b

]
=

[
H AT

A 0

][
x

λ

]
+

[
p

−b

]
= 0

[
x∗

λ∗

]
=

[
H AT

A 0

]−1 [
−p

b

]
=

[
−H−1(ATλ∗ − p)

−(AH−1AT )−1(AH−1p+ b)

]
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General Properties: KKT Conditions

Karush-Kuhn-Tucker (KKT) conditions for standard LP
If x∗ is regular for the constraints that are active at x∗ , then it is a global solution of
the LP problem in the standard LP if an only if

• Ax∗ = b, (4.3a)

• x∗ ≥ 0, (4.3b)

• there exist Lagrange multipliers λ∗ ∈ Rp×1 and µ∗ ∈ Rn×1 such that µ∗ ≥ 0

and

c+ATλ∗ − µ∗ = 0 (4.3c)

• µ∗
i x

∗
i = 0 for 1 ≤ i ≤ n (4.3d)

• The first two condition simply say that solution x∗ must be a feasible point. The
constraint matrix A and vector c are related through the Lagrange multipliers
λ∗ and µ∗ .
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General Properties

• From (4.3a)-(4.3d), in most cases solution x∗ cannot be strictly feasible.

• The term strictly feasible points is the points that satisfy the equality
constraints with x∗

i > 0 for 1 ≤ i ≤ n

• From (4.3d), µ∗ must be a zero vector for a strictly feasible point x∗ to be a
solution (x∗

i > 0). Hence (4.1c) becomes

c+ATλ∗ = 0

• For strictly feasible point to be a minimizer of the standard-form LP problem, the
n-dimensional vector c must lie in the p-dimensional subspace spanned by the
p columns of AT . Since p < n, the probability that c+ATλ∗ = 0 is very small.

• Any solutions of the problem are very likely to be located on the boundary of
the feasible region.
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General Properties

Solve the LP problem

minimize
x

f(x) = x1 + 4x2

subject to x1 + x2 = 1

xi ≥ 0, i = 1, 2
1

1

0

f = 5

f = 6P1

P2

Steepest-descent direction

x1

x2

• The feasible region of the problem is
the segment of the line x1 + x2 = 1

in the first quadrant.

• The dashed lines are contours of the
form f(x) = constant, and the arrow
points to the steepest-descent
direction of f(x)

We have

c =

[
1

4

]
and AT =

[
1

1

]

Since c and AT are linearly independent,
c = ATλ∗ cannot be satisfied and no
interior feasible point can be a solution.
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General Properties

From the figure, the unique minimizer is x∗ =
[
1 0

]T
. At x∗ the constraint

x1 + x2 = 1 and x2 = 0 are active. The Jacobian of these constraints,

J =

[
1 1

0 1

]

is nonsingular, x∗ is a regular point. From µ∗
i x

∗
i = 0 and x∗

1 = 1, then µ∗
1 = 0

c+ATλ∗ − µ∗ = 0[
1

4

]
+

[
1

1

]
λ∗ −

[
0

µ∗
2

]
= 0

λ∗ = −1 and µ∗
2 = 3

This is confirm that x∗ =
[
1 0

]T
is indeed a global solution (KKT condition).
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General Properties

Note: if the objective function is changed
to

f(x) = cTx = 4x1 + 4x2

We can have

c+ATλ∗ − µ∗ = 0 =⇒ λ∗ = −4,µ∗ = 0

1

1

0

f = 5

f = 6

Steepest-descent direction

x1

x2

Any feasible point becomes a global solution. The objective function remains constant
(x1 + x2 = 1)in the feasible region, i.e.,

f(x) = 4(x1 + x2) = 4, for x ∈ R2
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General Properties

Consider an alternative LP

minimize
x

f(x) = cTx

subject to Ax ≤ b

Necessary and sufficient conditions for a minimum in alternative form LP problem

If x∗ is regular for the constraints in (4.2b) that are active at x∗ , then it is a global
solution of the problem in (4.2a) if and only if

1. Ax∗ ≤ b (4.4a)

2. there exists a µ∗ ∈ Rp×1 such that µ∗ ≥ 0 and

c+ATµ∗ = 0 (4.4b)

3. µ∗
i (a

T
i x∗ − bi) = 0 for 1 ≤ i ≤ p (4.4c)

where aT
i is the ith row of A
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General Properties

• The theorem show that the solutions of the problem must be located on the
boundary of the feasible region.

• If x∗ is a strictly feasible point satisfying µ∗
i (a

T
i x− bi) = 0 , then Ax∗ < b and

the complementarity condition in (4.4c) implies that µ∗ = 0. Hence (4.4b)
cannot be satisfied unless c = 0

• If c = 0, it would lead to a meaningless LP problem.

• In other word, any solutions of (4.4a)-(4.4c) can only occur on the boundary of
the feasible region.
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General Properties

Solve the LP problem

minimize
x

f(x) = −x1 − 4x2

subject to − x1 ≤ 0

x1 ≤ 2

− x2 ≤ 0

x1 + x2 − 3.5 ≤ 0

x1 + 2x2 − 6 ≤ 0

1 2

1

2

3

0

f = −4

f = −6

P1

P2

P3

P4

P5

x1

x2

The five constraints can be expressed as Ax ≤ b with

A =


−1 0

1 0

0 −1

1 1

1 2

 , b =


0

2

0

3.5

6

 the feasible region is the polygon shown above.
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General Properties

• The solution cannot be inside the polygon, we consider the five edges of the
polygon. At any point of x on an edge other than the five vertices Pi only one
constraints is active. This mean that only one of the five µi’s is nonzero.

• At such an xi , (which is on the edge.), (4.4b) becomes

c =
[
−1 −4

]T
= −µiai

where ai is the transpose of the ith row in A.

• Since each ai is linearly independent of c, no µi exists that satisfies c = −µiai

• We have five vertices for verification. At P1 =
[
0 0

]T
, the constraints

−x1 = 0, and −x2 = 0 are active. Then c = −ATµ is

[
−1

−4

]
=

[
1 0

0 1

][
µ1

µ3

]
,=⇒ µ1 = −1, µ3 = −4

• Since µi ≤ 0, then P1 is not a solution.
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General Properties

• At the point P2 =
[
0 3

]T
, the constraints −x1 = 0 and x1 + 2x2 − 6 = 0 are

active. Then c = −ATµ is

[
−1

−4

]
= −

[
−1 0

1 2

]T [
µ1

µ5

]
=

[
1 −1

0 −2

][
µ1

µ5

]
µ1 = 1, µ5 = 2

µ = µ∗ =
[
1 0 0 0 2

]T
≥ 0

• P2 =
[
0 3

]T
is a minimizer, i.e., x = x∗ = P2 .

• By checking the other vertex point, the point P2 is the unique solution to the
problem.
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Facets, Edges, and Vertices

1

1

1

P2

P1

P3

x2

x1

x3

x1 + x2 + x3 ≤ 1

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0

Ax ≤ b

A =


1 1 1

−1 0 0

0 −1 0

0 0 −1

 , b =


1

0

0

0


The polyhedron is three-dimension face, which has four facets, six edges, and four
vertices.

A vertex is a feasible point P at which there exist at least n active constraints which
contain n linearly independent constraints where n is the dimension of x. Vertex P is
said to be nondegenerate if exactly n constraints are active at P or degenerative if
more than n constraints are active at P .

P1, P2, P3, P4 are nondegenerate vertices. 24/68



Facets, Edges, and Vertices

1

1

1

P3
P1

P5

P2

P4

x2

x1

x3

x1 + x2 + x3 ≤ 1

0.5x1 + 2x2 + x3 ≤ 1

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0

Ax ≤ b

A =


1 1 1

0.5 2 1

−1 0 0

0 −1 0

0 0 −1

 ,b =


1

1

0

0

0


• The convex polyhedron has five facets, eight edges, and five vertices.

• At vertex P5 four constraints are active but since n = 3, P5 is degenerate.

• The other four vertices, namely, P1, P2, P3 , and P4 , are nondegenerate.
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Feasible Descent Directions

Start from an initial point, we need to find a better new point:

Feasible direction
Let δ = αd be a change in x where α is a positive constant and d is a direction vector.
If R is the feasible region and a constant α̂ > 0 exists such that

x+ αd ∈ R

for all α in the range 0 ≤ α ≤ α̂, then d is said to be a feasible direction at point x.

• A vector d ∈ Rn×1 is said to be a feasible descent direction at a feasible point
x ∈ Rn×1 if d is a feasible direction and the linear objective function strictly
decreases along d , i.e., f(x+ αd) < f(x) for α > 0, where f(x) = cTx.

• This implies that

f(x+ αd) = cT (x+ αd) = cTx+ αcTd

1

α
[f(x+ αd)− f(x)] =

1

α

[
cTx+ αcTd− cTx

]
= cTd < 0
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Feasible Descent Directions

• For LP, we denote Aa as the matrix whose rows are the rows of A associated
with the constraints active at x.

• We can construct a matrix Aa the active constraint matrix at x. If
J = [j1, j2, . . . , jk] is the set of indices that identify active constraints at x then

Aa =


aT
j1

aT
j2
...

aT
jk

 , aT
j x = bj for j ∈ J

• If d is a feasible direction, we must have

Aa(x+ αd) ≤ ba

where ba =
[
bj1 bj2 · · · bjk

]T
28/68



Feasible Descent Directions

• Aa(x+ αd) ≤ ba ⇒ Aax+ αAad ≤ ba since Aax = ba , we must have
Aad ≤ 0

• So the characterizes of a feasible descent direction d is

Aad ≤ 0 and cTd < 0

The point x∗ is a solution of the problem in (4.2a) and (4.2b) if and only if there
is no feasible descent directions exist at x∗ .

Necessary and sufficient conditions for a minimum in alternative form LP problem

Point x∗ is a solution of the problem in (4.2a) and (4.2b) if and only if it is feasible and

cTd ≥ 0 for all d with Aa∗d ≤ 0

where Aa∗ is the active constraint matrix at x∗ .

The theorem shows that we could not find the feasible descent directions.
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Feasible Descent Directions

• For the standard form LP problem in (4.1a)-(4.1c), a feasible descent direction d

at a feasible point x∗ satisfies the constraints Ad = 0 and dj ≥ 0 for j ∈ J∗

and cTd ≤ 0, where J∗ = [j1, j2, . . . , jk] is the set of indices for the constraints
in (4.1c) that are active at x∗ .

Necessary and sufficient conditions for a minimum in standard form LP problem

Point x∗ is a solution of the problem in (4.1a)-(4.1c) if and only if it is feasible and

cTd ≥ 0 for all d with d ∈ N (A) and dj ≥ 0 for j ∈ J∗

where N (A) denotes the null space of A.

d ∈ N (A) means the set of d such that Ad = 0.
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Finding a Vertex (not the LP solution)

• We know that the solution of the LP problems can occur at vertex points. Under
some conditions a vertex minimizer always exists.

• We need to have a strategy that can be used to find a minimizer vertex for the
LP problem starting with a feasible point x0 .

• In the kth iteration, if the active constraint matrix at xk,Aak , has rank n, then
xk itself is already a vertex.

• Assume that rank(Aak ) < n. We will generate a feasible point xk+1 such that
the active constraint matrix at xk+1,Aak+1 , is an augmented version of Aak

with rank(Aak+1 ) increased by one.

• xk+1 is a point such that (a) it is feasible, (b) all the constraints that are active
at xk remain active at xk+1 , and (c) there is a new active constraint at xk+1 ,
which was inactive at xk . A vertex can be identified in a finite number of steps.

• Let xk+1 = xk + αkdk . To make sure that all active constraints at xk remain
active at xk+1 , we must have

Aakxk+1 = bak
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Finding a Vertex

• Since Aakxk = bak ,

Aakxk+1 = Axk + αkAakdk = bak

it follows that Aakdk = 0 (no more feasible direction).

• Since rank(Aak ) < n, the solutions of Aakdk = 0 form the null space of Aak

of dimension n− rank(Aak ). For a fixed xk and dk ∈ N (Aak ). We call an
inactive constraint aT

i xk − bi < 0 increasing with respect to dk if aT
i dk > 0.

(not in the null space.)

• If the ith constraint is an increasing constraint with respect to dk , then moving
from xk to xk+1 along dk , the constraint becomes

aT
i xk+1 − bi = aT

i (xk + αkdk)− bi

= (aT
i xk − bi) + αka

T
i dk = 0

with aT
i xk − bi < 0 and aT

i dk > 0.
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Finding a Vertex

• A positive αk that makes the ith constraint active at point xk+1 can be
identified as ( = 0)

αk = −
aT
i xk − bi

aT
i dk

• The moving point along dk also affects other inactive constraints and care must
be taken to ensure that the value of αk used does not lead to an infeasible
xk+1 .

• Two problems need to be addressed. (1) how to find a direction dk in the null
space N (Aak ) such that there is at least one decreasing inactive constraint
with respect to dk . (2) if dk is found, how to determine the step size αk .

• Given xk and Aak , we can find an inactive constraint whose normal aT
i is

linearly independent of the rows ofAak . It follows that the system of equations

[
Aak

aT
i

]
dk =

[
0

1

]

has a solution dk with dk ∈ N (Aak ) and aT
i dk > 0. 34/68



Finding a Vertex

• The set of indices corresponding to increasing active constraints with respect to
dk can be defined as

Ik =
{
i : aT

i xk − bi < 0,aT
i dk > 0

}
• The value of αk can be determined as the value for which xk + αkdk intersects
the nearest new constraint. Hence

αk = min
i∈Ik

(
−
(aT

i xk − bi)

aT
i dk

)

• If i = i∗ is an index in Ik that yields the αk , then it is quite clear that at point
xk+1 = xk + αkdk the active constraint matrix becomes

Aak+1 =

[
Aak

aT
i∗

]

where rank(Aak+1 ) = rank(Aak ) + 1. 35/68



Finding a Vertex

• By repeating the above steps, a feasible point xk with rank(Aak ) = n will
eventually be reached, and point xk is then deemed to be a vertex.
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Finding a Vertex

Solve the LP problem

minimize
x

f(x) = −x1 − 4x2

subject to − x1 ≤ 0

x1 ≤ 2

− x2 ≤ 0

x1 + x2 − 3.5 ≤ 0

x1 + 2x2 − 6 ≤ 0

1 2

1

2

3

0

P1

P2

P3

P4

P5

x1

x2

The five constraints can be expressed as Ax ≤ b with

A =


−1 0

1 0

0 −1

1 1

1 2

 , b =


0

2

0

3.5

6

 the feasible region is the polygon shown above.
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Finding a Vertex

• Starting from point x0 = [1 1]T , apply the iterative procedure to find a vertex
for the LP problem. Since the components of the residual vector at x0 is

r0 = Ax0 − b =


−1

1

−1

2

3

−


0

2

0

3.5

6

 =


−1

−1

−1

−1.5

−3

 are all negative .

• There are no active constraints at x0 . If the first constraint (whose residual is
the smallest) is chosen to form

[
Aak

aT
i

]
dk =

[
0

1

]
=⇒ aT

1 d0 =
[
−1 0

]
d0 = −d01 + (0)d02 = 1

d0 =
[
−1 0

]T
.
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Finding a Vertex

• The set I0 in this case contains only one index, i.e., I0 = {1}.

α0 = −
(aT

1 x0 − b1)

aT
1 d0

= −
(
−1− 0

1

)
= 1

• Hence

x1 = x0 + α0d0 =

[
1

1

]
+

[
−1

0

]
=

[
0

1

]
with Aa1 =

[
−1 0

]
.

• At point x1

r1 = Ax1 − b =


0

−2

−1

−2.5

−4

 Only − x1 ≤ 1 is active.
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Finding a Vertex

• The third constraint (whose residual is the smallest and inactive) is chosen to
be active:

[
Aa1

aT
3

]
d1 =

[
−1 0

0 −1

]
d1 =

[
0

1

]

we obtain d1 =
[
0 −1

]T
. It follows that I1 = {3}.

•

α1 = −
aT
3 x1 − b3

aT
3 d1

= −
(
−1− 0

1

)
= 1 with i∗ = 3

x2 = x1 + α1d1 =

[
0

0

]
, Aa2 =

[
−1 0

0 −1

]

• Since rankAa2 = 2 = n, x2 is a vertex.
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Finding a Vertex

1 2

1

2

3

0

d0 x0x1

d1

x2
x1

x2
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Finding a Vertex

Find the vertex for the convex polygon x1 + x2 + x3 = 1 such that x ≥ 0 starting with
x0 =

[
1
3

1
3

1
3

]T
. (For LP, we need x ≥ 0 to be −x ≤ 0.)

• We have

r0 = Ax0 − b =


1 1 1

−1 0 0

0 −1 0

0 0 −1




1
3
1
3
1
3

−


1

0

0

0

 =


0

− 1
3

− 1
3

− 1
3


The problem is standard form.

• We select the first inequality constraint (they are equal) so

[
Aa0

aT
1

]
d0 =

[
1 1 1

−1 0 0

]
d0 =

[
0

1

]

Since d01 + d02 + d03 = 0 and −d01 = 1, we have d02 + d03 = 1. Here we
select d02 = 1 and d03 = 0. Then d0 =

[
−1 1 0

]T
, I0 = {2}.
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Finding a Vertex

• We have

α0 = −
aT
1 x0 − b1

aT
1 d0

= −
− 1

3
− 0

1
=

1

3
, with i∗ = 2

x1 = x0 + α0d0 =
[
0 2

3
1
3

]T

• r1 =
[
0 0 − 2

3
− 1

3

]T
. Choosing the fourth inequality constraint , we have

[
Aa

aT
4

]
d1 =

[
0

1

]
, =⇒

 1 1 1

−1 0 0

0 0 −1

d1 =

00
1


d1 =

[
0 1 −1

]T
, with I1 = {4}

α1 = −
aT
4 x1 − b4

aT
4 d1

= −
− 1

3
− 0

1
=

1

3
, with i∗ = 4

x2 = x1 + α1d1 =
[
0 1 0

]T
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Finding a Vertex

We have

Ax2 − b =


0

0

−1

0

 =⇒ Aa2 =

 1 1 1

−1 0 0

0 0 −1

 with rank(Aa2 ) = 3.

The point x2 is a vertex.

x0
d0 x1

d1

x2

x2

x1

x3
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Vertex Minimizers

The iterative method for finding a vertex described in the previous section does not
involve the objective function f(x) = cTx. The vertex obtained may not be a
minimizer. If we start the iterative step at a minimizer, a vertex would eventually be
reached without increasing the objective function, which is a vertex minimizer.

Existence of a vertex minimizer in alternative-form LP problem
If the minimum of f(x) in the alternative-form LP problem is finite, then there is a
vertex minimizer.

Proof: If x0 is a minimizer, then x0 is finite and satisfies the condition Ax0 ≤ b and
there exists a µ∗ ≥ 0 such that

c+ATµ∗ = 0 ⇒ c+AT
a0

µ∗
a = 0,

where Aa0 is the active constraint matrix at x0 and µ∗
a is composed of the entries of

µ∗ that correspond to the active constraints.
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Vertex Minimizers

• If x0 is not a vertex, the method described in the previous section can be
applied to yield a point

x1 = x0 + α0d0

which is closer to a vertex, where d0 is a feasible direction that satisfies the
condition Aa0d0 = 0.

• It follows that at x1 the objective function remains the same as at x0 , i.e.,

f(x1) = cTx1 = cT (x0 + α0d0) = cTx0 − α0c
Td0

= cTx0 − α0(µ
∗
a)

TAa0d0 = cTx0 = f(x0)

• If x1 is not yet a vertex, then the process is continued to generate minimizers
x2,x3, . . . until a vertex minimizer is reached.
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Vertex Minimizers

• To apply the theorem to the standard form, it follow that

c = −ATλ∗ + µ∗ = −ATλ∗ + IT0 µ∗
a

where I0 consists of the rows of the n× n identity matrix that are associated
with the inequality constraints x ≥ 0 that are active at x0 , and µ∗

a is composed
of the entries of µ∗ that correspond to the active (inequality) constraints.

• At x0 , the active constraint matrix Aa0 is given by

Aa0 =

[
−A

I0

]
⇒ c = AT

a0

[
λ∗

µ∗
a

]

It can show that the objective function is not change.

Existence of a vertex minimizer in standard-form LP problem
If the minimum of f(x) in the standard LP problem is finite, then a vertex minimizer
exists.
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Simplex Method: Nondegenerate

• If the minimum value of the objective function in the feasible region is finite,
then a vertex minimizer exists.

• Let x0 be a vertex and assume that it is not a minimizer. The simplex method
generates an adjacent vertex x1 with f(x1) < f(x0) and continues doing so
until a vertex minimizer is reached.

• Given a vertex xk , a vertex xk+1 is adjacent to xk if Aak+1 is different from
Aak by only one row.

Aak =


aT
j1

aT
j2
...

aT
jn

 , Jk = {j1, j2, . . . , jn}

• If Jk and Jk+1 have exactly (n− 1) members, vertices xk and xk+1 are
adjacent.
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Simplex Method: Nondegenerate

• At vertex xk , the simplex method verifies whether xk is a vertex minimizer, and
if it is not, it finds an adjacent vertex xk+1 that yields a reduced value of the
objective function.

• Since a vertex minimizer exists and there is only a finite number of vertices, the
method will find the solution using a finite number of iterations.

• Under the nondegeneracy assumption, Aak is square and nonsingular. There
exists a µk ∈ Rn×1 such that

c+AT
ak

µk = 0

Since xk is a feasible point, we conclude that xk is a vertex minimizer if and
only if

µk ≥ 0

xk is not a vertex minimizer if and only if at least one component of µk or
(µk)l is negative. 51/68



Simplex Method: Nondegenerate

• Assume that xk is not a vertex minimizer and let (µk)l < 0.

• The simplex method finds an edge as a feasible descent direction dk that
points from xk to an adjacent vertex xk+1 given by xk+1 = xk + αkdk .

• A feasible descent direction dk is characterized by

Aakdk ≤ 0 and cTdk < 0 (∗)

• To find the edge that satisfies (∗), we denote the lth coordinate vector (the lth
column of the n× n identify matrix as el and examine vector dk that solves the
equation Aakdk = −el

• We note that Aakdk ≤ 0. We have

cT + µT
k Aak = 0 ⇒ cTdk + µT

k Aakdk = 0

cTdk = −µT
k Aakdk = µT

k el = (µk)l < 0

Hence dk satisfies (∗) and it is a feasible descent direction.
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Simplex Method: Nondegenerate

• For i ̸= l, Aakdk = −el implies that

aT
ji
(xk + αdk) = aT

ji
xk + αaT

ji
dk = bji

• There are exactly n− 1 constraints that are active at xk and remain active at
xk + αdk . This means that xk + αdk with α > 0 is an edge that connects xk to
an adjacent vertex xk+1 with f(xk + 1) < f(xk). The right step size αk can be
identified as

αk = min
i∈Ik

(
−(aT

i xk − bi)

aT
i dk

)
=

−(aT
i∗xk − bi∗ )

aT
i∗dk

where Ik contains the indices of the constraints that are inactive at xk with
aT
i dk > 0.

• The vertex xk+1 = xk + αkdk . Then at xk+1 the i∗th constraint becomes
active.
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Simplex Method: Nondegenerate

• Substituting jlth constraint with the active i∗th constraint in Aak+1 , there are
exactly n active constraints at xk+1 and Aak+1 is given by

Aak+1 =



aT
j1
...

aT
jl−1

aT
i∗

aT
jl+1

...
aT
jn



• The index set is given by

Jk+1 = {j1, . . . , jl−1, i
∗, jl+1, . . . , jn}
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Simplex Method: Nondegenerate

Simplex algorithm for the alternative-form LP problem, nondegenerate vertices
1. Input vertex x0 , and form Aa0 and J0 . Set k = 0

2. Solve AT
ak

µk = −c for µk . If µk ≥ 0 , stop (xk is a vertex minimizer):
otherwise, select the index l that corresponds to the most negative component
in µk .

3. Solve Aakdk = −el , where el is a unit vector at l index for dk .

4. Compute the residual vector rk = Axk − b = (ri)
p
i=1 If the index set

Ik = {i : ri < 0 and aT
i dk > 0} is empty, stop

(The objective function tends to −∞ in the feasible region);
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Simplex Method

Simplex algorithm for the alternative-form LP problem, nondegenerate vertices cont.

4. (cont.) otherwise, compute

αk = min
i∈Ik

(
−ri

aT
i dk

)

and record the index i∗ with αk = −ri∗/(a
T
i∗dk). Note: aT

i is the row of Aak

such that ri < 0.

5. Set xk+1 = xk + αkdk . Update Aak+1 and Jk+1 using

Aak+1 =
[
aj1 · · · ajl−1

ai∗ ajl+1
· · · ajn

]T
Jk+1 = {j1, . . . , jl−1, i

∗, jl+1, . . . , jn}

Set k = k + 1 and repeat from Step 2.
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Simplex Method

Solve the LP problem with initial vertex x0 =
[
2 1.5

]T

minimize
x

f(x) = −x1 − 4x2

subject to − x1 ≤ 0

x1 ≤ 2

− x2 ≤ 0

x1 + x2 − 3.5 ≤ 0

x1 + 2x2 − 6 ≤ 0

1 2

1

2

3

0

f = −4

f = −6

P1

P2

P3

x0

P5

x1

x2

The five constraints can be expressed as Ax ≤ b with

A =


−1 0

1 0

0 −1

1 1

1 2

 , b =


0

2

0

3.5

6

 the feasible region is the polygon shown above.

57/68



Simplex Method
• With x0 the second and fourth constraints are active and hence

Aa0 =

[
1 0

1 1

]
, J = {2, 4}

• Solving AT
a0

µ0 = −c for µ0 where c =
[
−1 −4

]T
, we obtain

µ0 =
[
−3 4

]T
. Since µ01

is negative, x0 is not a minimizer and l = 1. Next
we solve

Aa0d0 = −e1 ⇒
[
1 0

1 1

]
d0 = −

[
1

0

]

d0 =
[
−1 1

]T
• The residual vector at x0 is given by

r0 = Ax0 − b =
[
−2 0 −1.5 0 −1

]T
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Simplex Method
• r0 shows that the first, third, and fifth constrains are inactive at x0 .

a
T
1

aT
3

aT
5

d0 =

−1 0

0 −1

1 2

[−1

1

]
=

 1

−1

1

 , I0 = {1, 5}

α0 = min

(
−r01

aT
1 d0

,
−r05

aT
5 d0

)
= 1

x1 = x0 + α0d0 =

[
2

1.5

]
+ 1

[
−1

1

]
=

[
1

2.5

]

• Since l = 1, we have (by swapping aT
1 and aT

5 ),

Aa1 =

[
1 2

1 1

]
and J1 = {5, 4}

• End of the first iteration.
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Simplex Method
• The second iteration starts by solving AT

a1
µ1 = −c for µ1

[
1 1

2 1

]
µ1 =

[
1

4

]
=⇒ µ1 = (−1)

[
1 −1

−2 1

][
1

4

]
=

[
3

−2

]

Then the point x1 is not a minimizer and l = 2.

• By solving Aa1d1 = −e2

[
1 2

1 1

]
d1 = −

[
0

1

]
=⇒ d1 = (−1)

[
1 −2

−1 1

][
0

−1

]
=

[
−2

1

]

• We compute the residual vector at x1 as

r1 = Ax1 − b =
[
−1 −1 −2.5 0 0

]T
It indicates that the first three constraints are inactive at x1 .
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Simplex Method
• By evaluating

a
T
1

aT
2

aT
3

d1 =

−1 0

1 0

0 −1

[−2

1

]
=

 2

−2

−1

 , I1 = {1}, α1 =
−r11

aT
1 d1

=
1

2

• This leads to x2 = x1 + α1d1 =
[
0 3

]T
with l = 2 (by swapping aT

2 and aT
1 )

Aa2 =

[
1 2

−1 0

]
and J2 = {5, 1}

Which is complete the second iteration.

• Vertex x2 is confirmed to be a minimizer at the beginning of the third iteration
since the equation AT

a2
µ2 = −c and yields nonnegative Lagrange multipliers

µ2 =
[
2 1

]T
.
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Simplex Method

1 2

1

2

3

0

x0

d0

x1

d1

x2

x1

x2
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Simplex Method

minimize f(x) = x1 + x2

subject to x1 ≤ 2

x2 ≤ 2

−2x1 + x2 ≤ 2

2x1 + x2 ≤ 4 1 2

1

2

0

d0

x0

x1

d1

x1

x2

the constraints can be written as Ax ≤ b with

A =


1 0

0 1

−2 1

2 1

 and b =


2

2

2

4


Note: The feasible region is unbounded.
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Simplex Method

• We start with the vertex x0 =
[
1 2

]T
. At x0

r0 = Ax0 − b =
[
−1 0 −2 0

]T
, second and fourth constraints are active.

Aa0 =

[
0 1

2 1

]
and J0 = {2, 4}

• From AT
a0

µ0 = −c, we have

[
0 2

1 1

]
µ0 =

[
−1

−1

]
=⇒ µ0 = −

1

2

[
1 −2

−1 0

][
−1

−1

]
=

[
− 1

2

− 1
2

]

x0 is not a minimizer.

• Since both components of µ0 are negative, we can choose index l to be either 1
or 2.

64/68



Simplex Method

• Choosing l = 1,

Aa0d0 = −e1 =⇒
[
0 1

2 1

]
d0 =

[
−1

0

]
=⇒ d0 = −

1

2

[
1 −1

−2 0

][
−1

0

]
=

[
1
2

−1

]

• The residual vector at x0 is given by

r0 = Ax0 − b =
[
−1 0 −2 0

]T
the first and third constraints are inactive at x0 .

• We compute

[
aT
1

aT
3

]
d0 =

[
1 0

−2 1

][
− 1

2

−1

]
=

[
1
2

−2

]
, I0 = {1}

α0 =
−r01

aT
1 d0

=
1
1
2

= 2
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Simplex Method

• the next vertex is x1 = x0 + α0d0 =
[
2 0

]T
, with

Aa1 =

[
1 0

2 1

]
, and J1 = {1, 4}

• Check whether x1 is a minimizer by solving

AT
a1

µ1 = −c =⇒
[
1 2

0 1

]
µ1 =

[
−1

−1

]
=⇒ µ1 =

[
1 −2

0 1

][
−1

−1

]
=

[
1

−1

]

indicating that x1 is not a minimizer and l = 2

• Solving

Aa1d1 = −e2 =⇒
[
1 0

2 1

]
d1 =

[
0

−1

]
=⇒ d1 =

[
1 0

−2 1

][
0

−1

]
=

[
0

−1

]
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Simplex Method

• The residual vector at x1 is

r1 = Ax1 − b =
[
0 −2 −6 0

]T
• The second and third constraints are inactive. We evaluate

[
aT
2

aT
3

]
d1 =

[
0 1

−2 1

][
0

−1

]
=

[
−1

−1

]

• Since I1 is empty, we conclude that the solution of this LP problem is
un-bounded.
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