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Objective

At the end of this chapter you should be able to:
▶ Mathematically define the optimality conditions for an unconstrained problem.
▶ Describe, implement, and use line-search-based methods.
▶ Gradient Descent based method
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Two Approaches to Finding and Optimum

Line search approach

▶ Exact Line Search
▶ Approximate Line Search
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Line Search : Exact Line Search

Assume we have chosen a descent direction d. We need to choose the step factor α to
obtain our next design point. One approach is to use line search, which selects the
step factor that minimizes the one-dimensional function:

minimize
α

f(x + αd)

To inform the search, we can use the derivative of the line search objective, which is
simply the directional derivative along d at x + αd.

function LINE_SEARCH(f, d)
objective = α → f(x + α ∗ d)
a, b = brackect_minimum(objective)
α = minimize(objective, a, b)
return x + α ∗ d

end function

The exact line search is expensive, if we need to do it every step of the optimization.
In Matlab environment, we can use commands fminbnd or fminsearch.
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One-Dimensional Unconstrained Optimization

In general, exact line search in unconstrained optimization can be performed using
one-dimensional techniques. Common algorithms include:

Algorithm Requires Unimodality Note

Fibonacci Search 3 yes Efficient narrowing using Fi-
bonacci ratios

Golden Section Search 3 yes Uses golden ratio for interval re-
duction

Quadratic Fit Search 3 yes Fits a parabola to estimate min-
imum

Shubert-Piyavskii method 7 no Handles non-unimodal func-
tons

Bisection Method 7 no Simple, robust, and effective.

Since we consider both linear and nonlinear optimization problems, we consider only
the bisection method due to its simplicity and effectiveness–even when the function
is not unimodal.
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Unimodality

▶ Several of the algorithms assume unimodality of the objective function.
▶ A unimodal function f is one where there is a unique x∗ , such that f is

monotonically decreasing for x ≤ x∗ and monotonically increasing for x ≥ x∗ .
▶ It follows from this definition that the unique global minimum is at x∗ , and

there are no other local minima.
▶ Given a unimodal function, we can bracket and inter [a, c] containing the global

minimum if we can find three points a < b < c , such that f(a) > f(b) < f(c).
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Finding an Initial Bracket

▶ When optimizing a function, we often start by first bracketing and interval
containing a local minimum.

▶ After that, we then successively reduce the size of the bracketed interval to
converge on the local minimum.

▶ We choose a starting point 1 with coordinate x1 and a step size ∆ in the
positive direction. The distance we take is a hyperparameter to this algorithm.
The step size ∆ is 1× 10−2 .

▶ We then search in the downhill direction to find a new point that exceeds the
lowest point. With each step, we axpand the step size by some factor, which is
another hyperparameter to the to this algorithm that is often set to γ = 2.

▶ We need to bracket the minimum before using bisection because the bisection
method isn’t a minimization algorithm–it’s a root-finding algorithm. It’s only
guaranteed to work if we are already trapped at a root within an interval.
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Finding the Initial Bracket cont.
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Finding the Initial Bracket cont.

Bracketing Algorithm / Three-Point Pattern

1. Set x2 = x1 +∆

2. Evaluate f1 and f2

3. If f2 ≤ f1 Goto Step 5

4. Else Interchange f1 and f2 and x1 and x2 , and Set ∆ = −∆

5. Set ∆ = γ∆, x3 = x2 +∆, and Evaluate f3 at x3

6. If f3 > f2 Goto Step 8

7. Else Rename f2 as f1 , f3 as f2 , x2 as x1 , x3 as x2 , Goto Step 5

8. Point 1, 2, and 3 satisfy f1 ≥ f2 < f3 (three-point pattern)
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Finding an Initial Bracket: Julia

Simple Julia code:

1 function bracket_minimum(f, x=0, s=1e-2, k = 2.0)
2 # f is anonymous function, x is a starting point, s is step size, k is weight

mulitplier
3 # Ensure we start by going downhill
4 a, ya = x, f(x)
5 b, yb = a + s, f(a + s)
6
7 if yb > ya # swap the direction
8 a, b = b, a
9 ya, yb = yb, ya
10 s = -s
11 end
12 while true
13 c, yc = b + s, f(b + s)
14 if yc > yb
15 return a < c ? (a, c) : (c,a)
16 end
17 a, ya , b, yb = b, yb, c, yc
18 s *= k
19 end
20 end
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Finding an Initial Bracket: Matlab

Simple Matlab code:

1 function [a, c] = bracket_minimum(f, x, s, k)
2 % f: anonymous function, x: starting point, s: step size
3 % k: gamma (weight multiplier)
4
5 a = x; ya = f(x); b = a + s; yb = f(a + s);
6 % change the direction
7 if yb > ya
8 [a, b] = swap(a,b); [ya, yb] = swap(ya, yb); s = -s;
9 end
10 flag = 1; % yb < ya
11 while flag
12 s = s * k; c = b + s; yc = f(b + s);
13 if yc < yb
14 a = b; ya = yb; b = c; yb = yc;
15 else
16 if c < a
17 [a, c] = swap(a,c); % deal(c,a)
18 end
19 flag = 0;
20 end
21 end
22 end
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Finding the Initial Bracket cont.: Example

Consider the problem:

minimize
x

x2 +
54

x

in the interval (0, 5).
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Using a algorithm above we have the
interval (1.28, 5.12) by using
∆ = 1e− 2, γ = 2. The interval guarantees
that the minimum point lies in the interval.
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Line Search : Exact Line Search

Consider conducting a line search on f(x1, x2, x3) = sin(x1x2) + e(x2+x3) − x3 from
x = [1, 2, 3] in the direction d = [0,−1,−1]. The corresponding optimization problem
is:

minimize
α

sin((1 + 0α)(2− α))

+ e((2−α)+(3−α)) − (3− α)

which simplifies to:

minimize
α

sin(2− α) + e(5−2α) + α− 3 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0

50

100

150

The minimum is at α ≈ 3.127 with x ≈ [1,−1.126,−1.126].
Note I: ∇f(α) = − cos(2− α)− 2e(5−2α) + 1 = 0. We can solve for α by using
vpasolve in Matlab.
Note II: We can use Nonlinear search in Matlab or Julia like fminbnd from the original
problem.
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Line Search : Exact Line Search

Nonlinear optimization using (Matlab) fimnbnd:

1 f = @(alpha) sin(2-alpha) + exp(5-2*alpha) + alpha - 3\\
2 alpha1 = fminbnd(f, 0, 4, opts)

Root finding of gradient (Matlab) vpasolve:

1 syms alpha
2
3 f1 = -cos(2-alpha) - 2*exp(5-2*alpha) + 1;
4 alpha1 = vpasolve(f1==0, alpha)
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Line Search : Exact Line Search

Nonlinear optimization using (Julia) Optim

1 using Optim
2
3 f = α -> -sin(2 - α) + exp(5 - 2 * α) + α - 3
4
5 res = Optim.optimize(f, 0, 4) # minimize
6 sol = Optim.minimizer(res)

Root finding of gradient (Julia) nlsolve

1 using NLsolve
2
3 f = α -> -cos(2 - α) - 2 * exp(5 - 2 * α) + 1
4
5 sol = nlsolve(x -> [f(x[1])], [3.5]) # Initial guess between 3.5
6 sol.zero

We should have the same result around 3.127.
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Bisection Method

The bisection method can be used to find roots of the function, or points where the
function is zero. The root-finding methods can be used for optimization by applying
them to the derivative of the objective, locating where ∇f(x) = 0. We must ensure
that the resulting points are indeed local minima. In this method:

▶ The bisection method cuts the bracketed region in half with every iteration.
▶ The midpoint (a+ b)/2 is evaluated, and the new bracket is formed from the

midpoint and whichever side that continues to bracket a zero.
▶ We terminate immediately if the midpoint evaluates to zero. Otherwise we can

terminate after a fixed number of iterations.
▶ The method is guaranteed to converge within ϵ of x∗ within log2

(
|b−a|

ϵ

)
iterations, where log2 denotes the base 2 logarithm. This tells us how many
iterations are need to reach a solution within tolerance ϵ.

▶ In optimization, we often seek points where the derivative of the objective
function is zero–that is, where ∇f(x) = 0. These points may be minimum,
maximum, or saddle point.
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Bisection Method

Bisection Method

1. If a > b Then a, b = b, a EndIf

2. ya, yb = f(a), f(b)

3. If ya == 0 Then b = a EndIf

4. If yb == 0 Then a = b EndIf

5. While b− a > ϵ

6. x = (a+ b)/2

7. y = f(x)

8. If y == 0

9. a, b = x, x

10. ElseIf sign(y) == sign(ya)

11. a = x

12. Else

13. b = x

14. EndIf

15. EndWhile

16. Return (a, b)

Example: f(x) = 1
4
(sin(x) + sin(x

2
), and ∇f(x) = 1

4
(cos(x) + 1

2
cos(x

2
))

In this example, we use an approximate derivative using

∇f(x) =
f(a+ h)− f(a− h)

2h
, h = 1× 10−3

17 / 38



Bisection Method: Example
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Approximate Line Search: Armijo Rule

▶ It is often more computationally efficient to perform more iterations of a
descent method than to do an exact line search at each iteration, especially if
the function and derivative calculations are expensive.

▶ Many methods discussed so far can benefit from using approximate line search
to find a suitable step size with a small number of evaluations.

▶ Since descent methods must descend, a step size α may be suitable if it causes
a decrease in the objective function value. We need the sufficient decrease
condition. (to protect that the reductions in f values is not to small.)

▶ The sufficient decrease in the objective function value:

f(xk+1) ≤ f(xk) + βα∇dkf(xk)

with β ∈ [0, 1] often set to β = 1× 10−4 .
▶ This inequality states that the function value at the new point must lie at or

below the line defined by the initial slope, scaled by β. It prevents steps that
are too logn.
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Approximate Line Search

▶ If β = 0, then any decrease is acceptable. If β = 1, then the decrease has to be
at least as much as what would be predicted by a first-order approximation.

▶ If d is a valid descent direction, then there must exist a sufficiently small step
size that satisfies the sufficient decrease condition.

▶ We can start with a large step size and decrease it by a constant reduction
factor until the sufficient decrease condition is satisfied.

▶ The algorithm is known as backtracking line search because of how it
backtracks along the descent direction.
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Approximate Line Search

function BACKTRACKING_LINE_SEARCH(f,∇f, x, d, α; ρ = 0.5, β = 1× 4)

while f(x + α ∗ d) > f(x) + βα ∗ ∇f(x)T d do
α = ρα

end while
return α

end function

▶ The first condition is insufficient to guarantee convergence to a local minimum.
Very small step sizes will satisfy the first condition but can prematurely
converge.

▶ Backtracking line search avoids premature convergence by accepting the largest
satisfactory step size obtained by sequential downscaling and is guaranteed to
converge to ta local minimum.
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Approximate Line Search
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Objective function is

f(x) = 0.1x6
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Initial x = [−1.25, 1.25] , d = [4, 0.75], and β = 1× 10−4 , α are 1.2 and 0.05,
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Curvature Condition

The curvature condition requires the the directional derivative at the next iterate to be
shallower (α is not too close small.):

∇dkf(xk+1) ≥ σ∇dkf(xk)

▶ Where σ controls how shallow the next directional derivative must be. The α is
go farer than the previous slope.

▶ It is common to set σ larger than β with σ = 0.1 when approximate linear
search is used with the conjugate gradient method and to 0.9 when used with
Newton’s method.

▶ The strong curvature condition, which is more restrictive criterion in that is also
required not to be too positive:

|∇dkf(xk+1)| ≤ σ|∇dkf(xk)|

▶ Both sufficient decrease condition (for αU ) and strong curvature condition are
called strong Wolfe conditions.(for αL).
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Wolfe Condition

Consider approximate line search on f(x1, x2) = x2
1 + x1x2 + x2

2 from x = [1, 2] in
the direction d = [−1,−1], using a maximum step size of 10, a reduction factor of 0.5,
a first Wolfe condition parameter β = 1× 10−4 and a second Wolfe condition
parameter σ = 0.9.
The first Wolfe condition is f(x + αd) ≤ f(x) + βα(gT d), where g = ∇f(x) = [4, 5].
α = 10 we have

f

([
1

2

]
+ 10

[
−1

−1

])
≤ 7 + 1× 10−4(10)

([
4 5

] [−1

−1

])
217 ≤ 6.991 (It is not satisfied.)

α = 0.5(10) = 5 we have

f

([
1

2

]
+ 5

[
−1

−1

])
≤ 7 + 1× 10−4(5)

[
4 5

] [−1

−1

]
37 ≤ 6.996 (It is not satisfied.)
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Wolfe Condition

α = 0.5(5) = 2.5, we have

f

([
1

2

]
+ 2.5

[
−1

−1

])
≤ 7 + 1× 10−4(2.5)

[
4 5

]T [−1

−1

]
3.25 ≤ 6.998( The first Wolfe condition is satisfied.)

The candidate design point x′ = x + αd = [−1.5,−0.5]T is checked against the
second Wolfe condition:

∇df(x′) ≥ σ∇df(x)[
−3.5 −2.5

] [−1

−1

]
≥ σ

[
4 5

] [−1

−1

]
6 ≥ −8.1( The second Wolfe condition is satisfied. )

Approximate line search terminates with x = [−1.5 − 0.5]T .
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Wolfe Condition

0 5 10

0

50

100

150

200

𝛼 = 10

α = 10.0, x = [-9, -8], 217

α = 5.0, x = [-4.0, -3.0], 37.0
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function BACKTRACKING_LINE_SEARCH(f,∇f, x, d, α; ρ = 0.5, β = 1× 4, σ = 0.9)

y, g = f(x + αd),∇f(x)T d
while (y > f(x) + βα ∗ ∇f(x)T d) and (g ≤ σg) do

α = ρα

end while
return α

end function
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Momentum method

▶ The Momentum method is an optimization is an optimization algorithm that
helps accelerate the training of machine learning model, particularly deep
neural networks. It is an extension of the Gradient Descent algorithm and is
designed to overcome some of its limitations, such as slow convergence and the
tendency to get stuck in local minima.

▶ The core idea is to indtoduce a “velocity” term that accumulates an
exponentially decaying moving average of past gradients. This velocity is then
added to the current gradient to compute the update step. Thid process helps
to smooth out the updates and propel the optimizer in more consistant
direction, luch like a ball rolling down a hill gathers momentum.

▶ The momentum update equations are:

vk+1 = βvk − α∇f(xk)

xk+1 = xk + vk+1

▶ Instead of using pure negative gradient, we add a velocity term to the update
rule. If β = 0, it is a steepest descent.

27 / 38



Momentum method

The Momentum method can be understood through the analogy of a ball rolling
down-hill.

▶ Without Momentum: Imagine a ball being placed on a hillside and only moving
in the direction of the steepest descent at that exact point. If the terrain is
uneven with many small bumps a valleys, the ball’s path will be erratic and slow
as it reacts to every little change in the slope.

▶ With Momentum: Giving a ball some mass and letting it roll. As it moves, it
builds up momentum. This momentum helps it to smooth out its path, roll over
small bumps (local minima), and accelerate faster down the general slope of
the hill.

In term of Optimization, the “ball” is the set of parameters, and the “hill” is the
objective function landscape. The momentum term helps the optimizer to:

▶ Accelerate convergence: By accumulating past gradients, the optimizer can
move more quickly in directions of persistent descent.

▶ Dampen oscillations: In situations where the gradient changes direction
frequently (zig-zags), the momentum term helps to average out these changes,
leading to a more stable and direct path towards the minimum.
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Momentum method

▶ Escaping Local Minima: The momentum term can help the optimizer overcome
small local minima.

function GRADIENT_WITH_MOMENTUM(f,∇f, x0, α, β,N)

i = 1

while i < N) do
g = ∇f(x)
v = βv − αg
x = x + v

end while
return x

end function
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Momentum method: Nesterov Momentum

▶ One issue of momentum is that the steps do not slow down enough at the
bottom of a valley and tend to overshoot the valley floor.

▶ Nesterov momentum modifies the momentum algorithm to use the gradient at
the projected future position:

vk+1 = βvk − α∇f(xk + βvk)

xk+1 = xk + vk+1

▶ The only difference from the classic momentum method is that the gradient is
now evaluated at the point xk + βvk instead of xk . This is called a look ahead.

▶ The Nesterov momentum or Nesterov’s accelerated gradient (NAG) has become
an industry standard algorithm in machine learning.
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Momentum method: Nesterov Momentum

function GRADIENT_WITH_NESTEROV(f,∇f, x0, α, β,N)

i = 1

while i < N) do
g = ∇f(x)
v = βv − α∇f(x + βx)
x = x + v

end while
return x

end function
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Momentum method

Consider the Rosenbrock function with b = 100

f(x1, x2) = (a− x1)
2 + b(4x2 − x2

1)
2
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Momentum method

Consider a function, which contains a saddle point:

f(x1, x2) = 15e−0.25(x1−2)2 + 0.5e−2(x−2)2 + x2
1 + x2

2
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The Steepest Descent with fixed-step size get stuck at the local minima.
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Momentum method: AdaGrad and RMSProp

▶ The momentum and Nesterov momentum update all components of x with the
same learning rate. The Adaptive subgradient method or Adagrad adapts a
learning rate for each component of x.

▶ We use the sum of past gradients squared

vk = vk−1 − (∇f(xk))2

The (∇f(xk))2 is an elementwise square.

(∇f(xk))2 =

[(
∂f

∂x1

)2 ( ∂f

∂x2

)2

· · ·
(

∂f

∂xn

)2
]

resulting in the following iteration

xk+1 = xk +
α

√vk + ϵ
∇f(xk)

the small factor ϵ is added to the denomination to avoid division by zero.
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Momentum method: AdaGrad and RMSProp

▶ In the algorithm, when we divide by
√

v, we are actually multiplying by a vector
of elementwise inverses:

w =

[
1

√
v1

1
√
v2

· · ·
1

√
vn

]

▶ The running sum vk has no discount, and so it only increases, causing the
iterations to slow over time. RMSProp addresses the issue by adding a decay
factor to vk , similar to other momentum methods:

vk+1 = βvk + (1− β)(∇f(xk))2
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Momentum method: AdaGrad and RMSProp

function GRADIENT_WITH_ADAGRAD(f,∇f, x0, α, β,N)

i = 1

while i < N) do
g = ∇f(x), v = βv + g ∗ g element wise multiplication
x = x − αg/(

√
v + ϵ) element wise divide

end while
return x

end function

function GRADIENT_WITH_RMSPROP(f,∇f, x0, β, α,N)

i = 1

while i < N) do
g = ∇f(x), v = βv + (1− β)g ∗ g element wise multiplication
x = x − αg/(

√
v + ϵ) element wise divide

end while
return x

end function
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Momentum method: AdaGrad and RMSProp

Consider a function, which contains a saddle point:

f(x1, x2) = 15e−0.25(x1−2)2 + 0.5e−2(x−2)2 + x2
1 + x2
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