
One-Dimensional Unconstrained Optimization I

Asst. Prof. Dr.-Ing. Sudchai Boonto
August 20, 2024

Department of Control System and Instrumentation Engineering
King Mongkut’s University of Technology Thonburi
Thailand

Objective

At the end of this chapter you should be able to:

• Mathematically define the optimality conditions for an unconstrained problem.

• Describe, implement, and use line-search-based methods.

• Explain the pros and cons of the various search direction methods.

• Understand the trust-region approachand how it contrasts with the line search
approach.

2/47

Unconstrained optimization problems

Determine the objective function for building a minimum cost cylinderical
refrigeration tank of volume 50 m3 , if the circular ends cost $ 10 per m2 , the cylindrical
wall costs $6 per m2 , and it costs $80 per m2 to refrigerate over the useful life.

f(x, L) = (10)(2)

(
πx2

4

)
+ (6)(πxL) + 80

(
(2)

πx2

4
+ πxL

)
= 45πx2 + 86πxL

L =
(50)(4)

πx2
=

200

πx2

f(x) = 45πx2 +
17200

x

One problem is minimize f(x) for all real x. How!

3/47

Unconstrained optimization problems

We consider unconstrained optimization problems with continuous design variables,

minimize
x

f(x),

where x = [x1, . . . , xn] is composed of the design variables that the optimization
algorithm can change.

Minimum Points:

• the point x∗ is a weak local minimum if there exists a δ > 0 such that
f(x∗) ≤ f(x) for all x such that |x− x∗| < δ, that is f(x∗) ≤ f(x) for all x in a
δ-neighborhood of x∗ .

• the point x∗ is a strong local minimum if there exists a δ > 0 such that
f(x∗) < f(x) for all x such that |x− x∗| < δ.

• x∗ is a global minimum if f(x∗) < f(x) for all x

4/47

Unconstrained optimization problems

x1 x2Feasible region

A

f(x)

B

C

D

5/47

Optimality Conditions

A point x∗ is a local minimum if f(x∗) ≤ f(x) for all x in the neighborhood of x∗ . A
second-order Taylor series expansion about x∗ for small steps of size p yields

f(x∗ + p) = f(x∗) +∇f(x∗))Tp+
1

2
pTH(x∗)p+ . . .

f(x∗ − p) = f(x∗)−∇f(x∗))Tp+
1

2
pTH(x∗)p+ . . .

For x∗ to be an optimal point, we must have f(x∗ + p) ≥ f(x∗) for all p. This implies
that

∇f(x∗)Tp+
1

2
pTH(x∗)p ≥ 0 and −∇f(x∗)Tp+

1

2
pTH(x∗)p ≥ 0 ∀p.

The magnitude of p is small, the second term can be neglected. Therefore, we require
that

∇f(x∗)Tp ≥ 0 and −∇f(x∗)Tp ≥ 0 =⇒ ∇f(x∗) = 0
6/47

Optimality Conditions

The condition ∇f(x∗) = 0 is called the first-order necessary optimality condition.

Because the gradient term has to be zero, we must satisfy the remaining term in the
previous inequality, that is

pTH(x∗)p ≥ 0 ∀p orH(x∗) ⪰ 0

• These two conditions ∇f(x∗) = 0 andH(x∗) ⪰ 0 are necessary conditions for
a local minimum but not sufficient.

• In some direction pTH(x∗)p can be zero. We need to check the third-order
term. If it is a minimum, it is a weak minimum.

• To have the sufficient optimality condition,H(x∗) must be positive definite.

7/47

Quadratic function with different types of Hessians

8/47

Optimality Conditions

Consider the following function of two variables:

f(x1, x2) = 0.5x41 + 2x31 + 1.5x21 + x22 − 2x1x2

Let the gradient equal to zero,

∇f(x1, x2) =

 ∂f
∂x1

∂f
∂x2

 =

[
2x31 + 6x21 + 3x1 − 2x2

2x2 − 2x1

]
=

[
0

0

]

From the second row, we have x1 = x2 . Substituting this in to the first equation yields

x1
(
2x21 + 6x1 + 1

)
= 0 =⇒ x1 = 0,−2.8223,−0.1771

The solution of this equation has three points: xA = (0, 0), xB = (−2.8223,−2.8223),
and xC = (−0.1771,−0.1771). (see ch2/optimal_condition.jl)

9/47

Optimality Conditions

To clarify these three points, we need to find the Hessian matrix.

H(x1, x2) =


∂2f

∂x2
1

∂2f
∂x1∂x2

∂2f
∂x1∂x2

∂2f

∂x2
2

 =

[
6x21 + 12x1 + 3 −2

−2 2

]

For each point, we have

H(xA) =

[
3 −2

−2 2

]
, H(xB) =

[
16.9373 −2

−2 2

]
, H(xC) =

[
1.0627 −2

−2 2

]

The eigenvalues are λA = (0.438, 4.561), λB = (1.737, 17.200) , and
λC = (−0.523, 3.586), respectively. The first two eigenvalues show the evidence of
the local minimum points, while the last one addresses the saddle point.

10/47

Optimality Conditions

x1

-4 -3 -2 -1 0 1 2

x 2

-4

-3

-2

-1

0

1

2

global minimum

saddle point

local minimum

11/47

Optimality Conditions

We want to

minimize
x

45πx2 −
17200

x

We set

∇f = 90πx−
17200

x2
= 0 =⇒ x3 =

17200

90π
= 60.833

We have x = 3.93 m and L = 200/(πx2) = 4.12 m.
The cost is

f(x∗) = 45(x∗)2 +
17200

x∗
= 6560

SinceH(x∗) = 90π + (3(17200))/(x∗)3 = 1132.85, it is strictly positive. Thus the
solution is a strict or strong minimum.

12/47

Optimality Conditions

Determine the dimensions of an open box of maximum volume that can be
constructed form an A4 sheet 210 mm × 297 mm by cutting four squares of side x from
the corners and folding and gluing the edges as shown in Fig.

13/47

Optimality Conditions

The problem is to

maximize
x

V (x) = (297− 2x)(210− 2x)x = 62370x− 1014x2 + 4x3

We set f(x) = −V (x) = −62370x+ 1014x2 − 4x3 . Setting ∇f(x) = 0, we get

∇f(x) = −62370 + 2028x− 12x2 = 0 =⇒ x = 40.423 and 128.577 mm.

The possible solution of x is only the first one, where x∗ = 40.423 mm. The
H(x∗) = 2028− 24x∗ = 1057.848 > 0 . implies that x∗ is a strict minimum of f(x) or
maximum of V (x).
The maximum value of the box is 1128.5 cm3 .

14/47

Convex Sets

• A set S is called a convex set if for any two points in the set, every point on the
line joining the two points is in the set.

• Alternatively, the S is convex if for every pair of points x1 and x2 in S, and every
α such that 0 < α < 1, the point αx1 + (1− α)x2 is in S.

• example of convex sets:

• the set of all real numbers R is a convex set.
• any closed interval of R is also a convex set.
• A = {x ∈ R : 0 ≤ x ≤ 1}, B = {x ∈ R : 2 ≤ x ≤ 3} and S = A ∪B. S is
not a convex set.

x1

x2

x1

x2

convex set nonconvex set 15/47

Convex Functions

• A function f(x) defined over a convex set Rc is said to be convex if for every
pair of points x1,x2 ∈ Rc and every real number 0 ≤ α ≤ 1 , the inequality

f(αx1 + (1− α)x2) ≤ αf(x1) + (1− α)f(x2)

hold. If x1 ̸= x2 and

f(αx1 + (1− α)x2) < αf(x1) + (1− α)f(x2)

then f(x) is said to be strictly convex.

• If ψ(x) is defined over a convex set Rc and f(x) = −ψ(x) is convex, then ϕ(x)
is said to be concave. If f(x) is strictly convex, ψ(x) is strictly concave.

is located in Rc

16/47

Properties Convex Functions

f(x)

xx1 x2x = αx1 + (1− α)x2

f(x)

αf(x1) + (1− α)f(x2)

f(x1)
f(x2)

Properties of Convex Functions

• If f has continuous first derivatives then f is convex over a convex set S if and
only if for every x and y in S, f(y) ≥ f(x) + f ′(x)(y − x) This means that the
graph of the function lies above the tangent line drawn at point show in above
figure.

17/47

Properties Convex Functions

• If f has continuous second derivatives then f is convex over a convex set S if
and only if for every x in S,

f ′′(x) ≥ 0

• If f(x∗) is a local minimum for a convex function f on a convex set S, then it is
also a global minimum.

• If f has continuous first derivatives on a convex set S and for a point x∗ in S,
f ′(x∗)(y − x∗)|geq0 for every y in S, then x∗ is a global minimum point of f
over S.

Example

Prove that f = |x|, x ∈ R1 , is a convex function. Using the triangular inequality
|x+ y| ≤ |x|+ |y|, we have, for any two real numbers x1 and x2 and 0 < α < 1,

f(αx1 + (1− α)x2) = |αx1 + (1− α)x2| ≤ α|x1|+ (1− α)|x2|

≤ αf(x1) + (1− α)f(x2)
18/47

Unimodality

• Several of the algorithms assume unimodality of the objective function.

• A unimodal function f is one where there is a unique x∗ , such that f is
monotonically decreasing for x ≤ x∗ and monotonically increasing for x ≥ x∗ .

• It follows from this definition that the unique global minimum is at x∗ , and
there are no other local minima.

• Given a unimodal function, we can bracket and inter [a, c] containing the global
minimum if we can find three points a < b < c , such that f(a) > f(b) < f(c).

x
0 1 2 3 4 5 6 7 8 9 10 11

f(x
)

0

25

50

75

100

125

150

175

200
f(x) = x2 + 54/x

19/47

Finding an Initial Bracket

• When optimizing a function, we often start by first bracketing and interval
containing a local minimum.

• After that, we then successively reduce the size of the bracketed interval to
converge on the local minimum.

• We choose a starting point 1 with coordinate x1 and a step size ∆ in the
positive direction. The distance we take is a hyperparameter to this algorithm.
The step size ∆ is 1× 10−2 .

• We than search in the downhill direction to find a new point that exceeds the
lowest point. With each step, we axpand the step size by some factor, which is
another hyperparameter to the to this algorithm that is often set to γ = 2.

20/47

Finding the Initial Bracket cont.

21/47

Finding the Initial Bracket cont.

Bracketing Algorithm / Three-Point Pattern

1. Set x2 = x1 +∆

2. Evaluate f1 and f2
3. If f2 ≤ f1 Goto Step 5

4. Else Interchange f1 and f2 and x1 and x2 , and Set ∆ = −∆

5. Set ∆ = γ∆, x3 = x2 +∆, and Evaluate f3 at x3
6. If f3 > f2 Goto Step 8

7. Else Rename f2 as f1 , f3 as f2 , x2 as x1 , x3 as x2 , Goto Step 5

8. Point 1, 2, and 3 satisfy f1 ≥ f2 < f3 (three-point pattern)

22/47

Finding the Initial Bracket cont.

Consider the problem:

minimize
x

x2 +
54

x

in the interval (0, 5).

x
0 1 2 3 4 5 6 7 8 9 10 11

f(x
)

0

25

50

75

100

125

150

175

200
f(x) = x2 + 54/x

Using a algorithm above we have the
interval (1.28, 5.12) by using
∆ = 1e− 2, γ = 2. The interval guarantees
that the minimum point lies in the interval.

23/47

Fibonacci Search

If we have a unimodal f bracketed by the interval [a, b]. Given a limit on the number
of times we can query the objective function. Fibonacci search is guaranteed to
maximally shrink the bracketed interval.

1 2

__________ new interval if Y1 < Y2

new interval if Yl > Y2 ----------

€

,.,.._

-------- new interval if Y1 < Y2

new interval if Yl > Y2 --------

With three queries, we can shrink the interval by a factor of three. We first query f on
the one-third and two-third points on the interval, discard one-third of the interval,
and then sample just next to the better sample. 24/47

Fibonacci Search cont.

For n queries, the interval lengths are related to the Fibonacci sequence:
1, 1, 2, 3, 5, 8, The first two terms are one, and the following terms are always the
sum of the previous two:

Fn =

1, if n ≤ 2

Fn−1 + Fn−2, otherwise

In−j = Fj+1In j = 1, 2, . . . , n− 1

For j = n− 1 and n− 2,

I1 = FnIn I2 = Fn−1In

In =
I1

Fn
=⇒

In

I1
=

1

Fn

I2 =
Fn−1

Fn
I1

25/47

Fibonacci Search cont.

Consider the interval [0, 1], and number of trials n = 5.

F0 = 1, F1 = 1, F2 = 2, F3 = 3, F4 = 5, F5 = 8, ...

• We have I2 = F4
F5
I1 = 5

8
and I3 = F3

F4
I2 = 3

5
5
8
I1 = 3

8

• The new interval is [0, 3
8
, 5
8
, 1]. The new interval will be either [0, 5

8
] or [3

8
, 1]. If

the result is left hand side we have [0, 5
8
]

• Set four points we have [0, 2
8
, 3
8
, 5
8
], then we have [0, 2

8
, 3
8
] and again set four

point [0, 1
8
, 2
8
, 3
8
]

• We have [0, 1
8
, 1
8
, 2
8
]. The central points coincide thus we should add a small

number ϵ = 1e− 2 or less. Then the interval is [0, 1
8
, 1
8
+ ϵ, 2

8
] The final stage

should be either [0, 1
8
+ ϵ] or [1

8
, 2
8
].

• Since n = 5, we have I5
I1

= 1
8
= 1

F5

26/47

Fibonacci Search cont.

The Fibonacci sequence can be determined analytically using Binet’s formula:

Fn =
φn − (1− φ)n

√
5

,

where φ = (1 +
√
5)/2 ≈ 1.61803 is the golden ratio.

The ratio between successive values in the Fibonacci sequence is:

Fn

Fn−1
= φ

1− sn+1

1− sn
,

where s = (1−
√
5)/(1 +

√
5) ≈ −0.382.

27/47

Fibonacci Search Algorithm

Fibonacci Search

1. Set the interval [a, b] and the
number of interval reductions n

2. If ϵ is given find the smallest n such
that 1

Fn
< ϵ.

3. Set φ = 1.61803,
s = (1−

√
5)/(1 +

√
5),

ρ = 1/(φ(1− sn+1))/(1− sn))

4. Set d = ρb+ (1− ρ)a

5. Set yd = f(d)

6. For i In 1 To n− 1

7. If i == n− 1

8. c = ϵa+ (1− ϵ)d

9. Else

10. c = ρa+ (1− ρ)b

11. EndIf

12. Set yc = f(c)

13. If yc < yd

14. b, d, yd = d, c, yc

15. Else

16. a, b = b, c

17. EndIf

18. Set
ρ = 1/(φ(1− sn−i+1))/(1− sn−i)

19. EndFor

20. Return a < b ? (a, b) : (b, a)

28/47

Fibonacci Search cont.

In the interval reduction problem, the initial interval is given to be 4.68 units. The final
interval desired is 0.01 units. Find the number of interval reductions using Fibonacci
method
Solution: We need to choose the smallest n such that

1

Fn
<

0.01

4.68
or Fn > 468

The Fibonacci sequence is 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, we get
n = 14. The number of interval reductions is n− 1 = 13.
Note: Write a program to check the result by yourself.

29/47

Fibonacci Search cont.

A projectile released from a height h at an angle θ with respect to the horizontal in a
gravitational field g, shown in Fig. travels a distance D when it hits the ground. D is
given by

D =

V sin θ

g
+

√
2h

g
+

(
V sin θ

g

)2
V cos θ

If h = 0.5 m, V = 90 m/s, g = 9.81 m/s2 ,
determine the angle θ in degrees for which
the distance D is a maximum. Also
calculate the maximum distance D in
meters. Using the range for θ of 0◦ to 80◦

and compare your results for 7 and 19
Fibonacci interval reductions. Note: We are
going to minimize V = −D. (See:
Bracket.jl)

30/47

Golden Section Search

If we take the limit of the Fibonacci Search for large n, we see that the ratio between
successive values of the Fibonacci sequence approaches the golden ratio
(https://en.wikipedia.org/wiki/Golden_ratio):

lim
n→∞

Fn

Fn−1
= φ

31/47

https://en.wikipedia.org/wiki/Golden_ratio

Golden Section Search Algorithm

Golden Section Search

1. Set the interval [a, b] and the
number of interval reductions n

2. If ϵ is given find the smallest n such
that 1

Fn
< ϵ.

3. Set φ = 1.61803, ρ = φ− 1

4. Set d = ρb+ (1− ρ)a

5. Set yd = f(d)

6. For i In 1 To n− 1

7. c = ρa+ (1− ρ)b

8. Set yc = f(c)

9. If yc < yd

10. b, d, yd = d, c, yc

11. Else

12. a, b = b, c

13. EndIf

14. EndFor

15. Return a < b ? (a, b) : (b, a)

You can test the algorithm with the following function with 5 interval reductions:

f(x) = −e−x2

f(x) = (sin(x) + sin(x/2))/4 32/47

Quadratic Fit Search Algorithm

• Quadratic fit search gives our ability to analytically solve for the minimum of a
quadratic function. Many local minima look quadratic when we zoom in close
enough.

• Quadratic fit search iteratively fits a quadratic function to three bracketing
points, solves for the minimum, chooses a new set of bracketing points, and
repeats as shown in Figure below:

Given bracketing points a < b < c, we wish
to find the coefficients p1, p2, and p3 for
the quadratic function q that goes through
(a, ya), (b, yb), and (c, yc):

q(x) = p1 + p2x+ p3x
2

ya = p1 + p2a+ p3a
2

yb = p1 + p2b+ p3b
2

yc = p1 + p2c+ p3c
2

33/47

Quadratic Fit Search Algorithm cont.

In matrix form, we have

yayb
yc

 =

1 a a2

1 b b2

1 c c2


p1p2
p3

 ,
p1p2
p3

 =

1 a a2

1 b b2

1 c c2


−1 yayb

yc


The quadratic function is then

q(x) = ya
(x− b)(x− c)

(a− b)(a− c)
+ yb

(x− a)(x− c)

(b− a)(b− c)
+ yc

(x− a)(x− b)

(c− a)(c− b)

We can solve for the unique minimum by finding where the derivative is zero:

x∗ =
1

2

ya(b2 − c2) + yb(c
2 − a2) + yc(a2 − b2)

ya(b− c) + yb(c− a) + yc(a− b)

Quadratic fit search is typically faster than golden section search. It may need
safeguards for cases where the next point is very close to other points.

34/47

Quadratic Fit Search Algorithm

Quadratic Fit Search

1. Set n is a number of iteration.

2. Set ya, yb, yc = f(a), f(b), f(c)

3. For i In 1 To n− 3

4. Set

x =
1

2

(ya(b2 − c2) + yb(c2 − a2) + yc(a2 − b2))

(ya(b− c) + yb(c− a) + yc(a− b))

yx = f(x)

5. If x > b

6. If yx > yb

7. c, yc = x, yx

8. Else

9.
a, ya, b, yb = b, yb, x, yx

10. EndIf

9. ElseIf x < b

10. If yx > yb

11. a, ya = x, yx

12. Else

13. c, yc, b, yb = b, yb, x, yx

14. EndIf

15. EndIf

16. EndFor

17. Return (a, b, c)

You can test the algorithm with the following function with 5 interval reductions:

f(x) = −e−x2

f(x) = (sin(x) + sin(x/2))/4

35/47

Quadratic Fit Search Algorithm

x
0 3 6 9

f(x
)

−20

0

20

40

 Interation 1

x
0 3 6 9

f(x
)

−20

0

20

40

 Interation 2

x
0 3 6 9

f(x
)

−20

0

20

40

 Interation 3

x
0 3 6 9

f(x
)

−20

0

20

40

 Interation 4

See julia/ch3/Bracket.html
36/47

julia/ch3/Bracket.html

Optimization of non-unimodal problem

• The techniques presented above, namely Fibonacci, Golden Section, and
Polynomial fit method, require the function to be unimodal.

• However functions are multimodal and further, their modality cannot be
ascertained a priori.

• Techniques for finding the global minimum are few, and can be broadly
classified as based on deterministic or random search.

• We discuss some of them.

37/47

Shubert-Piyavskii Method

The Shubert-Piyavskii method is a global optimization method over a domain [a, b],
meaning it is guaranteed to converge on the global minimum of a function
irrespective of any local minima or whether the function is unimodal.

• The Shubert-Piyavskii method requires that the function be Lipschitz continous,
meaning that it is continuous and there is an upper bound on the magnitude of
its derivative. A function f is Lipshitz continuous on [a, b] if there exists an l > 0

such that:

|f(x)− f(y)| ≤ l|x− y| for all x, y ∈ [a, b]

l is as large as the largest unsigned instantaneous rate of change the function
attains on [a, b].

• Given a point (x0, f(x0)), we knwo that the lines f(x0)− l(x− x0) for x > x0

and f(x0) + l(x− x0) for x < x0 form a lower bound of f .

38/47

Shubert-Piyavskii Method

• The Shubert-Piyavskii method iteratively builds a tighter and tighter lower
bound on the function.

• Given a valid Lipschitz constant l the algorithm begins by sampling the
midpoint, x(1) = (a+ b)/2.

• A sawtooth lower bound is constructed using lines a slope ±l from this point.

• further iterations find the minimum point in the sawtooth, evaluate the function
at that x value, and then use the result to update the sawtooth.

39/47

Shubert-Piyavskii Method

• The algorithm is stopped when the difference in height between the minimum
sawtooth value and the function evaluation at that point is less than a given
tolerance ϵ. For the minimum peak (x(n), y(n)) and function evaluation f(x(n)),
we thus terminate if y(n) − f(x(n)) < ϵ

• For every peak, an uncertainty region can be computed according to:

[
x(i) −

1

l
(ymin − y(i)), x(i) +

1

l
(ymin − y(i))

]
40/47

Shubert-Piyavskii Method

• The main drawback of the Shubert-Piyavskii method is that it requires knowing
a valid Lipschitz constant. Large Lipschitz constants will result in poor lower
bounds.

• We can use upper bounds instead of lower bounds, as well. By changing the
minimum point to the maximum point in each step.

41/47

Shubert-Piyavskii Method

42/47

Bisection Method

The bisection method can be used to find roots of the function, or points where the
function is zero. The root-finding methods can be used for optimization by applying
them to the derivative of the objective, locating where f ′(x) = 0. We must ensure that
the resulting points are indeed local minima. In this method:

• The bisection method cuts the bracketed region in half with every iteration.

• The midpoint (a+ b)/2 is evaluated, and the new bracket is formed from the
midpoint and whichever side that continues to bracket a zero.

• We terminate immediately if the midpoint evaluates to zero. Otherwise we can
terminate after a fixed number of iterations.

• The method is guaranteed to converge within ϵ of x∗ within log2

(
|b−a|

ϵ

)
iterations, where log2 denotes the base 2 logarithm.

43/47

Bisection Method

Bisection Method

1. If a > b Then a, b = b, a EndIf

2. ya, yb = f(a), f(b)

3. If ya == 0 Then b = a EndIf

4. If yb == 0 Then a = b EndIf

5. While b− a > ϵ

6. x = (a+ b)/2

7. y = f(x)

8. If y == 0

9. a, b = x, x

10. ElseIf sign(y) == sign(ya)

11. a = x

12. Else

13. b = x

14. EndIf

15. EndWhile

16. Return (a, b)
44/47

MATLAB function fminbnd

fminbnd find minimum of single-variable function on fixed interval. It is a
one-dimensional minimizer that finds a minimum for a problem specified by

minimize
x

f(x)

subject to x1 < x < x2

% Matlab Example
a = 9/7;
fun = @(x)sin(x-a);
x = fminbnd(fun, 1, 2*pi)
x = 5.9981

% Matlab Example
f = @(x) 2 - 2*x + exp(x)

% tolX has a default value of 1.0e-4
opts = optimset('tolX', 1.0e-6);
[xopt, fopt, ifl, out]

= fminbnd(f, 0, 2,opts)
xopt = 0.6931; fopt = 2.6137

• The algorithms that used in this function are golden section search, and
quadratic interpolation.

• Try to use optimset('Display','iter'), and see results. 45/47

Julie Optim.jl

using Optim

f = x -> sin(x - 9/7); x1 = 0; x2 = 2π
result1 = optimize(f, x1, x2, Brent(), show_trace=true))
xopt1, fopt1 = Optim.minimizer(result1), Optim.minimum(result1)

result2 = optimize(f, x1, x2, GoldenSection(),
show_trace=true, abs_tol=1e-3)

xopt2, fopt2 = Optim.minimizer(result2), Optim.minimum(result2)

46/47

Reference

1. Joaquim R. R. A. Martins, Andrew Ning, ”Engineering Design Optimization,”

Cambridge University Press, 2021

2. Alexander Mitsos, ”Applied Numerical Optimization,” Lecture Note RWTH AACHEN

University

3. Ashok D. Belegundu, Tirupathi R. Chandrupatla, ”Optimization Concepts and

Applications in Engineering,” Cambridge University Press, 2019

47/47

