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Objective

Topics:

• Review: linear algebra

• Geometrical Intuition

• Standard form for LPs

• Examples

Most parts of this lecture is taken from Laurent Lessarn , ”Introduction to
Optimization,” Lecture Note, University of Wisconsin–Madison.
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Matrix basic

Two vectors x,y ∈ Rn can be multiplied together in two ways. Both are valid matrix
multiplications:

• inner product: produces a scalar.

xTy =
[
x1 · · · xn

]
y1
...
yn

 = x1y1 + · · ·+ xnyn

Also called dot product. Sometime write x · y or ⟨x,y⟩.

• Outer product: produces an n× n matrix.

xyT =


x1

...
xn

[
y1 · · · yn

]
=


x1y1 · · · x1yn
...

. . .
...

xny1 · · · xnyn


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Matrix basic

• Matrices and vectors can be stacked and combined to form bigger matrices as
long as the dimesions agree, e.g. If x1, . . . ,xm ∈ Rn , then
X =

[
x1 x2 . . . xm

]
∈ Rm×n

• Matrices can also be concatenated in blocks. For example

Y =

[
A B

C D

]

if A,C have same number of columns, A,B have same number of rows, etc.

• Matrix multiplication also works with block matrices:

[
A B

C D

][
P

Q

]
=

[
AP+BQ

CP+DQ

]

as long as A has as many columns as P has rows, etc.
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Linear and Affine Functions

• A function f(x1, . . . , xm) is linear in the variables x1, . . . , xm if there exist
constants a1, . . . , am such that

f(x1, . . . , xm) = a1x1 + · · ·+ amxm = aT x

• A function f(x1, . . . , xm) is affine in the variables x1, . . . , xm if there exist
constants b, a1, . . . , am such that

f(x1, . . . , xm) = a0 + a1x1 + · · ·+ amxm = aTx+ b

Example:

• 3x− y is linear in (x, y).

• 2xy + 1 is affine in x and y but not in (x, y).

• x2 + y2 is not linear or affine.
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Linear and Affine Functions

Several linear or affine functions can be combined:


a11x1 + · · ·+ a1nxn + b2

a21x1 + · · ·+ a2nxn + b2
...

am1x1 + · · ·+ amnxn + bm

 =⇒


a11 · · · a1n
...

. . .
...

am1 · · · amn



x1

...
xn

+


b1
...

bm



which can be written simply as Ax+ b. Same definitions apply to:

• A vector-valued function F (x) is linear in x if there exists a constant matrix A
such that F (x) = Ax.

• A vector-valued function F (x) is affine in x if there exists a constant matrix A
and vector b such that F (x) = Ax+ b.
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Geometry of Affine Equation

• The set of points x ∈ Rn that satisfies a linear equation a1x1 + · · ·+ anxn = 0

(or aTx = 0) is called a hyperplane. The vector a is normal to the hyperplane.

• If the right=hand side is nonzero: aTx = b, the solution set is called an affine
hyperplane. (It’s a shifted hyperplane.)
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Geometry of Affine Equation

• The set of points x ∈ Rn satisfying many linear equations
ai1x1 + · · ·+ aimxn = 0 for i = 1, . . . ,m (orAx = 0) is called a subspace (the
intersection of many hyperplanes).

• If the right-hand side is nonzero: Ax = b, the solution set is called an affine
subspace, (the shifted subspace).
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Geometry of Affine Equation

The dimension of a subspace is the number of independent directions it contains. A
line has dimension 1, a plane has dimension 2, and so on. (Hyperplanes are
subspaces)

• A hyperplane in Rn is a subspace of dimension n− 1.

• The intersection of k hyperplanes has dimension at least n− k (”at least”
because of potential redundancy).
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Affine Combinations

If x,y ∈ Rn , then the combination

w = αx+ (1− α)y for some α ∈ R

is called an affine combination.

If Ax = b and Ay = b, then Aw = b. So affine combinations of points in an (affine)
subspace also belong to the subspace.
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Convex Combinations

If x,y ∈ Rn , then the combination

w = αx+ (1− α)y for some 0 ≤ α ≤ 1

is called a convex combination. It’s the line segment that connects x and y.
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Geometry of affine inequalities

• The set of points x ∈ Rn that satisfies a linear inequality
a1x1 + · · ·+ anxn ≤ b (or aT ≤ b) is called a halfspace. The vector a is normal
to the halfspace and b shifts it.

• Define w = αx+ (1− α)y where 0 ≤ α ≤ 1. If aTx ≤ b and aTy ≤ b, then
aTw ≤ b.
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Geometry of affine inequalities

• The set of points x ∈ Rn satisfying many linear inequalities
ai1x1 + · · ·+ ainxn ≤ bi for i = 1, . . . ,m (or Ax ≤ b) is called a polyhedron
(the intersection of many halfspaces). Some sources use the term polytope
instead.

• As before: let w = αx+ (1− α)y where 0 ≤ α ≤ 1. If Ax ≤ b and Ay ≤ b,
then Aw ≤ b.
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Linear Programming

• Many engineering optimization problem can be cast as a linear programming
(planning or scheduling) problem.

• The Linear Programming (LP) is an optimization problem where the objective
function and the constraints are linear functions of the optimization variables.

• Several nonlinear optimization problems can be solved by iteratively solving
linearized versions of the original problem.

• In 1947, George Dantzig developed the famous Simplex method.

• Several variations of the Simplex method were introduced after that. Some
variations are commercial products, which are secret. They can solve several
thousand variables problem in less than one minute.

• The more efficient (most but not always) technique is the interior-point method
(IPM).
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Linear Programming

• We can put every LP in the form:
Maximization:

maximize
x∈Rn

cTx

subject to Ax ≤ b

x ≥ 0

Minimization:

minimize
x∈Rn

cTx

subject to Ax ≥ b

x ≥ 0
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The linear program

A linear program (LP) is an optimization model with:

• real-valued variables (x ∈ Rn)

• affine objective function (cTx+ d), can be minimized or maximized.

• constraints may be:

• affine equations (Ax = b)

• affine inequalities (Ax ≤ b) or (Ax ≥ b)

• combinations of the above

• individual variables may have:

• box constraints (p ≤ xi , or xi ≤ q, or p ≤ xi ≤ q)

• no constraints (xi is unconstrained)

There are many equivalent ways to express the same LP.
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Solutions of an LP

There are exactly three possible cases:

• Model is infeasible: there is no x

that satisfies all the constraints. (is
the model correct?)

• Model is feasible, but unbounded:
the cost function can be arbitrarily
improved. (forgot a constraint?)

• Model has a solution which occurs
on the boundary of the set. (there
may be many solutions!).
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Standard form

Top Brass Trophy Company makes large championship trophies for
youth athletic leagues. At the moment, they are planning pro-
duction for fall sports: US football and football. Each US football
trophy has a wood base, an engraved plaque, a large brass US football

on top, and returns $12 in profit. Football trophies are similar except

that a brass football ball is on top, and the unit profit is only $9.

Since the US football has an asymmetric shape, its base requires 4

board feet of wood; the football base requires only 2 board feet. At

the moment there are 1000 brass US footballs in stock, 1500 football

balls, 1750 plaques, and 4800 board feet of wood. What trophies

should be produced from these supplies to maximize total profit
assuming that all that are made can be sold?

US football football both
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Standard form

Recipe for building each trophy

wood plaques US footballs soccer balls profit

US football 4 ft 1 1 0 $ 12
football 2 ft 1 0 1 $ 9

Quantity of each ingredient in stock

wood plaques US football balls Football balls

in stock 4800 ft 1750 1000 1500
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Linear Programming

maximize
f,s

12f + 9s

subject to 4f + 2s ≤ 4800

f + s ≤ 1750

0 ≤ f ≤ 1000

0 ≤ s ≤ 1500

Matrix form

maximize
x

cTx

subject to Ax ≤ b

x ≥ 0

This is in matrix form, with:

A =


4 2

1 1

1 0

0 1

 , b =


4800

1750

1000

1500

 , c =

[
12

9

]
, x =

[
f

s

]
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Graphical Method

Define z = 12f + 9s, where z = profit. Here s = − 12
9
f + z

9
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Standard Form

The standard form of the linear programming problem is :

minimize cTx

subject to Ax = b

x ≥ 0

Example:

minimize f(x) = 4x1 − 5x2 + 3x3

subject to 3x1 − 2x2 + 7x3 = 7

8x1 + 6x2 + 6x3 = 5

x1, x2, x3 ≥ 0

x =

x1

x2

x3

 , c =

 4

−5

3

 , A =

[
3 −2 7

8 6 6

]
, b =

[
7

5

]
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Transformation tricks

1. Converting minimize to maximize or vice versa

minimize
x

cTx = −maximize
x

−cTx

2. Reversing inequalities (flip the sign if b is negative):

Ax ≤ b ⇐⇒ (−A)x ≥ (−b)

3. If a variable has a lower bound other than zeros

x ≥ 5, → x′ = x− 5, → x′ ≥ 0

4. Inequalities to equalities (add slack variable):

f(x) ≤ 0 ⇐⇒ f(x) + s = 0 and s ≥ 0
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Transformation tricks

5. Unbounded to bounded (add difference):

x ∈ R ⇐⇒ u ≥ 0, v ≥ 0, and x = u− v

6. Bounded to unbounded (convert to inequality):

p ≤ x ≤ q ⇐⇒
[

1

−1

]
x ≤

[
q

−p

]
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Standard Form: Example
Consider a linear programming problem:

maximize f(x) = −5x1 − 3x2 + 7x3

subject to 2x1 + 4x2 + 6x3 = 7

3x1 − 5x2 + 3x3 ≤ 5

− 4x1 − 9x2 + 4x3 ≤ −4

x1 ≥ −2, 0 ≤ x2 ≤ 4

Convert to a minimization problem and make the third constraint to be nonnegative:

minimize f(x) = 5x1 + 3x2 − 7x3

subject to 2x1 + 4x2 + 6x3 = 7

3x1 − 5x2 + 3x3 ≤ 5

4x1 + 9x2 − 4x3 ≥ 4

x1 ≥ −2, 0 ≤ x2 ≤ 4
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Standard Form: Example
Transform x1 to x′

1 = x1 + 2 , make bound for x3 = x′
3 − x′′

3 , and change 0 ≤ x2 ≤ 4

to be x2 ≥ 0 and x2 ≤ 4

minimize f(x) = 5x1 + 3x2 − 7x3

subject to 2x1 + 4x2 + 6x3 = 7

3x1 − 5x2 + 3x3 ≤ 5

4x1 + 9x2 − 4x3 ≥ 4

x2 ≤ 4

x′
1, x2, x

′
3, x

′′
3 ≥ 0

Substitute all things
minimize f(x) = 5x′

1 + 3x2 − 7x′
3 + 7x′′

3 − 10

subject to 2x′
1 + 4x2 + 6x′

3 − 6x′′
3 = 11

3x′
1 − 5x2 + 3x′

3 − 3x′′
3 ≤ 11

4x′
1 + 9x2 − 4x′

3 + 4x′′
3 ≥ 12

x2 ≤ 4

x′
1, x2, x

′
3, x

′′
3 ≥ 0 26/31



Standard Form: Example
The constant term in the objective function could be remove via a transformation
f ′(x) = f(x) + 10. The final step is to add slack and excess variables to convert the
general constraints to the equality constraints:

minimize f ′(x) = 5x′
1 + 3x2 − 7x′

3 + 7x′′
3

subject to 2x′
1 + 4x2 + 6x′

3 − 6x′′
3 = 11

3x′
1 − 5x2 + 3x′

3 − 3x′′
3 + s2 = 11

4x′
1 + 9x2 − 4x′

3 + 4x′′
3 − e3 = 12

x2 + s4 = 4

x′
1, x2, x

′
3, x

′′
3 , s2, e3, s4 ≥ 0

In matrix form minimize cTx

subject to Ax = b

x ≥ 0
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Standard Form: Example

c =
[
5 3 −7 7 0 0 0

]T
, b =

[
11 11 12 4

]T

A =


2 4 6 −6 0 0 0

3 −5 3 −3 1 0 0

4 9 −4 4 0 −1 0

0 1 0 0 0 0 1


x =

[
x′
1 x2 x′

3 x′′
3 s2 e3 s4

]T

28/31



Standard Form: Example

Put the problem

minimize − 2x1 + 3x2

subject to x1 + x2 ≤ 5

x ≥ 0

in the standard form. Obtain a graphical solution for the original problem and the
standard problem.

5

5

0

f = −10

f = 0

f = 7

f = 15

x1

x2

From the figure, it is obvious that the
minimum value of the objective function
over the feasible region is f∗ = −10, and
the optimal point is x∗ =

[
5 0

]T
.
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Standard Form: Example

Change it into a standard form by adding a slack variable x3 :

minimize f(x) = −2x1 + 3x2

subject to x1 + x2 + x3 = 5

x ≥ 0

(0, 5, 0)

(5, 0, 0)

(0, 0, 5)

x2

x1

x3 The minimum of the objective function is
at x∗ =

[
5 0 0

]T
. The optimal

solution is the same like the original
problem as the slack variable x3 is set to
zero.

How can we find the optimal vertex?
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