Linear Programming I

Asst. Prof. Dr.-Ing. Sudchai Boonto September 1, 2023

Department of Control Systems and Instrumentation Engineering King Mongkut's Unniversity of Technology Thonburi Thailand

Objective

Topics:

- Review: linear algebra
- Geometrical Intuition
- Standard form for LPs
- Examples

Most parts of this lecture is taken from Laurent Lessarn , "*Introduction to Optimization*," Lecture Note, University of Wisconsin–Madison.

Matrix basic

Two vectors **^x***,* **^y** *[∈]* ^R*ⁿ* can be multiplied together in two ways. Both are valid matrix multiplications:

• inner product: produces a scalar.

$$
\mathbf{x}^T \mathbf{y} = \begin{bmatrix} x_1 & \cdots & x_n \end{bmatrix} \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix} = x_1 y_1 + \cdots + x_n y_n
$$

Also called *dot product*. Sometime write **x** *·* **y** or *⟨***x***,* **y***⟩*.

• Outer product: produces an $n \times n$ matrix.

$$
\mathbf{x}\mathbf{y}^T = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} \begin{bmatrix} y_1 & \cdots & y_n \end{bmatrix} = \begin{bmatrix} x_1y_1 & \cdots & x_1y_n \\ \vdots & \ddots & \vdots \\ x_ny_1 & \cdots & x_ny_n \end{bmatrix}
$$

Matrix basic

- Matrices and vectors can be stacked and combined to form bigger matrices as long as the dimesions agree, e.g. If $\mathbf{x}_1, \ldots, \mathbf{x}_m \in \mathbb{R}^n$, then $\mathbf{X} = \begin{bmatrix} \mathbf{x}_1 & \mathbf{x}_2 & \dots & \mathbf{x}_m \end{bmatrix} \in \mathbb{R}^{m \times n}$
- Matrices can also be concatenated in blocks. For example

$$
\mathbf{Y} = \begin{bmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{C} & \mathbf{D} \end{bmatrix}
$$

if **A***,* **C** have same number of columns, **A***,* **B** have same number of rows, etc.

• Matrix multiplication also works with block matrices:

$$
\begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{bmatrix} P \\ Q \end{bmatrix} = \begin{bmatrix} AP + BQ \\ CP + DQ \end{bmatrix}
$$

as long as **A** has as many columns as **P** has rows, etc.

Linear and Affine Functions

• A function $f(x_1, \ldots, x_m)$ is **linear** in the variables x_1, \ldots, x_m if there exist constants a_1, \ldots, a_m such that

$$
f(x_1,\ldots,x_m)=a_1x_1+\cdots+a_mx_m=a^Tx
$$

• A function $f(x_1, \ldots, x_m)$ is **affine** in the variables x_1, \ldots, x_m if there exist constants b, a_1, \ldots, a_m such that

$$
f(x_1,\ldots,x_m)=a_0+a_1x_1+\cdots+a_mx_m=\mathbf{a}^T\mathbf{x}+\mathbf{b}
$$

Example:

- 3*x − y* is linear in (*x, y*).
- \cdot 2*xy* + 1 is affine in *x* and *y* but not in (x, y) .
- x^2+y^2 is not linear or affine.

Linear and Affine Functions

Several linear or affine functions can be combined:

$$
\begin{bmatrix}\na_{11}x_1 + \cdots + a_{1n}x_n + b_2 \\
a_{21}x_1 + \cdots + a_{2n}x_n + b_2 \\
\vdots \\
a_{m1}x_1 + \cdots + a_{mn}x_n + b_m\n\end{bmatrix}\n\implies\n\begin{bmatrix}\na_{11} & \cdots & a_{1n} \\
\vdots & \ddots & \vdots \\
a_{m1} & \cdots & a_{mn}\n\end{bmatrix}\n\begin{bmatrix}\nx_1 \\
\vdots \\
x_n\n\end{bmatrix}\n+\n\begin{bmatrix}\nb_1 \\
\vdots \\
b_m\n\end{bmatrix}
$$

which can be written simply as $Ax + b$. Same definitions apply to:

- \cdot A vector-valued function $F(\mathbf{x})$ is **linear** in \mathbf{x} if there exists a constant matrix **A** such that $F(\mathbf{x}) = \mathbf{A}\mathbf{x}$.
- \cdot A vector-valued function $F(\mathbf{x})$ is affine in \mathbf{x} if there exists a constant matrix \mathbf{A} and vector **b** such that $F(\mathbf{x}) = \mathbf{A}\mathbf{x} + \mathbf{b}$.

Geometry of Affine Equation

- The set of points $x \in \mathbb{R}^n$ that satisfies a linear equation $a_1x_1 + \cdots + a_nx_n = 0$ (or $\mathbf{a}^T\mathbf{x}=0$) is called a **hyperplane**. The vector \mathbf{a} is *normal* to the hyperplane.
- \cdot If the right=hand side is nonzero: $\mathbf{a}^T\mathbf{x}=\mathbf{b}$, the solution set is called an \mathbf{a} ffine hyperplane. (It's a shifted hyperplane.)

Geometry of Affine Equation

- The set of points **^x** *[∈]* ^R*ⁿ* satisfying many linear equations $a_{i1}x_1 + \cdots + a_{im}x_n = 0$ for $i = 1, \ldots, m$ (or $Ax = 0$) is called a subspace (the intersection of many hyperplanes).
- \cdot If the right-hand side is nonzero: $Ax = b$, the solution set is called an **affine** subspace, (the shifted subspace).

Intersections of affine hyperplanes are affine subspaces.

The dimension of a subspace is the number of independent directions it contains. A line has dimension 1, a plane has dimension 2, and so on. (Hyperplanes are subspaces)

- A hyperplane in ^R*ⁿ* is a subspace of dimension *ⁿ [−]* ¹.
- The intersection of *k* hyperplanes has dimension at least *n − k* ("at least" because of potential redundancy).

Affine Combinations

If $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$, then the combination

$$
\mathbf{w} = \alpha \mathbf{x} + (1 - \alpha) \mathbf{y} \qquad \text{for some } \alpha \in \mathbb{R}
$$

is called an affine combination.

If $A x = b$ and $A y = b$, then $A w = b$. So affine combinations of points in an (affine) subspace also belong to the subspace.

Affine Combinations

If $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$, then the combination

$$
\mathbf{w} = \alpha \mathbf{x} + (1 - \alpha) \mathbf{y} \qquad \text{for some } \alpha \in \mathbb{R}
$$

is called an affine combination.

If $A x = b$ and $A y = b$, then $A w = b$. So affine combinations of points in an (affine) subspace also belong to the subspace.

If $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$, then the combination

$$
\mathbf{w} = \alpha \mathbf{x} + (1 - \alpha) \mathbf{y} \quad \text{for some } 0 \le \alpha \le 1
$$

is called a convex combination. It's the line segment that connects **x** and **y**.

Geometry of affine inequalities

- The set of points **^x** *[∈]* ^R*ⁿ* that satisfies a linear inequality $a_1x_1 + \cdots + a_nx_n \leq b$ (or $a^T \leq b$) is called a **halfspace**. The vector *a* is *normal* to the halfspace and **b** shifts it.
- Define $\mathbf{w} = \alpha \mathbf{x} + (1 \alpha) \mathbf{y}$ where $0 \le \alpha \le 1$. If $\mathbf{a}^T \mathbf{x} \le \mathbf{b}$ and $\mathbf{a}^T \mathbf{y} \le \mathbf{b}$, then $\mathbf{a}^T \mathbf{w} \leq \mathbf{b}$.

Geometry of affine inequalities

- The set of points **^x** *[∈]* ^R*ⁿ* satisfying many linear inequalities $a_{i1}x_1 + \cdots + a_{in}x_n \leq b_i$ for $i = 1, \ldots, m$ (or $Ax \leq b$) is called a polyhedron (the intersection of many halfspaces). Some sources use the term polytope instead.
- As before: let $\mathbf{w} = \alpha \mathbf{x} + (1 \alpha) \mathbf{y}$ where $0 \leq \alpha \leq 1$. If $\mathbf{A}\mathbf{x} \leq \mathbf{b}$ and $\mathbf{A}\mathbf{y} \leq \mathbf{b}$, then $\mathbf{A}\mathbf{w} \leq \mathbf{b}$.

Intersections of halfspaces are polyhedra.

Linear Programming

- Many engineering optimization problem can be cast as a linear programming (planning or scheduling) problem.
- The Linear Programming (LP) is an optimization problem where the objective function and the constraints are linear functions of the optimization variables.
- Several nonlinear optimization problems can be solved by iteratively solving linearized versions of the original problem.
- In 1947, George Dantzig developed the famous Simplex method.
- Several variations of the Simplex method were introduced after that. Some variations are commercial products, which are secret. They can solve several thousand variables problem in less than one minute.
- The more efficient (most but not always) technique is the interior-point method (IPM) .

Linear Programming

• We can put every LP in the form: Maximization:

> $maximize$ $\mathbf{c}^T \mathbf{x}$ **^x***∈*R*ⁿ* subject to $Ax \leq b$ **x** *≥* 0

Minimization:

$$
\begin{aligned}\n\min_{\mathbf{x} \in \mathbb{R}^n} & \mathbf{c}^T \mathbf{x} \\
\text{subject to} & \mathbf{A} \mathbf{x} \ge \mathbf{b} \\
& \mathbf{x} \ge 0\n\end{aligned}
$$

The linear program

A linear program (LP) is an optimization model with:

- real-valued variables (**^x** *[∈]* ^R*n*)
- \cdot affine objective function $(\mathbf{c}^T\mathbf{x}+\mathbf{d})$, can be minimized or maximized.
- constraints may be:
	- \cdot affine equations ($Ax = b$)
	- affine inequalities (**Ax** *≤* **b**) or (**Ax** *≥* **b**)
	- combinations of the above
- individual variables may have:
	- box constraints ($p \leq x_i$, or $x_i \leq q$, or $p \leq x_i \leq q$)
	- \cdot no constraints (x_i is unconstrained)

There are many equivalent ways to express the same LP.

There are exactly three possible cases:

- Model is infeasible: there is no **x** that satisfies all the constraints. (is the model correct?)
- Model is feasible, but unbounded: the cost function can be arbitrarily improved. (forgot a constraint?)
- Model has a solution which occurs on the boundary of the set. (there may be many solutions!).

US football in the football both both

Quantity of each ingredient in stock

Linear Programming

This is in matrix form, with:

$$
\mathbf{A} = \begin{bmatrix} 4 & 2 \\ 1 & 1 \\ 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} 4800 \\ 1750 \\ 1000 \\ 1500 \end{bmatrix}, \quad \mathbf{c} = \begin{bmatrix} 12 \\ 9 \end{bmatrix}, \quad \mathbf{x} = \begin{bmatrix} f \\ s \end{bmatrix}
$$

Graphical Method

Define $z = 12f + 9s$, where $z =$ profit. Here $s = -\frac{12}{9}f + \frac{z}{9}$

Standard Form

The standard form of the linear programming problem is :

minimize **c** *^T* **x** subject to $A x = b$ **x** *≥* 0

Example:

minimize $f(x) = 4x_1 - 5x_2 + 3x_3$ subject to $3x_1 - 2x_2 + 7x_3 = 7$ $8x_1 + 6x_2 + 6x_3 = 5$ $x_1, x_2, x_3 \geq 0$ $\mathbf{x} =$ Γ $\overline{}$ *x*1 *x*2 *x*3 1 $\vert \cdot \vert$ **c** = Γ $\overline{}$ 4 *−*5 3 1 $\vert \cdot \vert$ **A** = $\begin{bmatrix} 3 & -2 & 7 \\ 8 & 6 & 6 \end{bmatrix}$, **b** = [7 5]

Transformation tricks

1. Converting minimize to maximize or vice versa

$$
\underset{\mathbf{x}}{\text{minimize}} \ \mathbf{c}^T \mathbf{x} = -\underset{\mathbf{x}}{\text{maximize}} \ -\mathbf{c}^T \mathbf{x}
$$

2. Reversing inequalities (flip the sign if **b** is negative):

$$
\mathbf{A}\mathbf{x}\leq\mathbf{b}\iff(-\mathbf{A})\mathbf{x}\geq(-\mathbf{b})
$$

3. If a variable has a lower bound other than zeros

$$
x \ge 5, \quad \to \quad x' = x - 5, \quad \to \quad x' \ge 0
$$

4. Inequalities to equalities (add slack variable):

$$
f(\mathbf{x}) \leq 0 \iff f(\mathbf{x}) + s = 0 \text{ and } s \geq 0
$$

Transformation tricks

5. Unbounded to bounded (add difference):

 $x \in \mathbb{R} \iff u \ge 0, v \ge 0, \text{ and } x = u - v$

6. Bounded to unbounded (convert to inequality):

$$
p\leq x\leq q \iff \begin{bmatrix}1\\-1\end{bmatrix}x\leq \begin{bmatrix}q\\-p\end{bmatrix}
$$

Consider a linear programming problem:

maximize
$$
f(\mathbf{x}) = -5x_1 - 3x_2 + 7x_3
$$

\nsubject to $2x_1 + 4x_2 + 6x_3 = 7$
\n $3x_1 - 5x_2 + 3x_3 \le 5$
\n $- 4x_1 - 9x_2 + 4x_3 \le -4$
\n $x_1 \ge -2, 0 \le x_2 \le 4$

Convert to a minimization problem and make the third constraint to be nonnegative:

```
minimize f(x) = 5x_1 + 3x_2 - 7x_3subject to 2x_1 + 4x_2 + 6x_3 = 73x_1 - 5x_2 + 3x_3 \leq 54x_1 + 9x_2 - 4x_3 \geq 4x<sub>1</sub> \geq −2, 0 \leq x<sub>2</sub> \leq 4
```
Transform x_1 to $x'_1 = x_1 + 2$, make bound for $x_3 = x'_3 - x''_3$, and change $0 \le x_2 \le 4$ to be $x_2 \geq 0$ and $x_2 \leq 4$

> minimize $f(x) = 5x_1 + 3x_2 - 7x_3$ subject to $2x_1 + 4x_2 + 6x_3 = 7$ $3x_1 - 5x_2 + 3x_3 \leq 5$ $4x_1 + 9x_2 - 4x_3 \ge 4$ $x_2 \leq 4$ $x'_1, x_2, x'_3, x''_3 \geq 0$

Substitute all things

minimize $f(\mathbf{x}) = 5x'_1 + 3x_2 - 7x'_3 + 7x''_3 - 10$ subject to $2x'_1 + 4x_2 + 6x'_3 - 6x''_3 = 11$ $3x'_1 - 5x_2 + 3x'_3 - 3x''_3 \le 11$ $4x'_1 + 9x_2 - 4x'_3 + 4x''_3 \ge 12$ $x_2 \leq 4$ $x'_1, x_2, x'_3, x''_3 \geq 0$

The constant term in the objective function could be remove via a transformation $f'(\mathbf{x}) = f(\mathbf{x}) + 10$. The final step is to add slack and excess variables to convert the general constraints to the equality constraints:

> minimize $f'(\mathbf{x}) = 5x'_1 + 3x_2 - 7x'_3 + 7x''_3$ subject to $2x'_1 + 4x_2 + 6x'_3 - 6x''_3 = 11$ $3x'_1 - 5x_2 + 3x'_3 - 3x''_3 + s_2 = 11$ $4x'_1 + 9x_2 - 4x'_3 + 4x''_3 - e_3 = 12$ $x_2 + s_4 = 4$ $x'_1, x_2, x'_3, x''_3, s_2, e_3, s_4 \geq 0$

> > minimize $\mathbf{c}^T \mathbf{x}$ subject to $A x = b$ **x** *≥* 0

In matrix form

27/31

$$
\mathbf{c} = \begin{bmatrix} 5 & 3 & -7 & 7 & 0 & 0 & 0 \end{bmatrix}^T, \quad \mathbf{b} = \begin{bmatrix} 11 & 11 & 12 & 4 \end{bmatrix}^T
$$

$$
\mathbf{A} = \begin{bmatrix} 2 & 4 & 6 & -6 & 0 & 0 & 0 \\ 3 & -5 & 3 & -3 & 1 & 0 & 0 \\ 4 & 9 & -4 & 4 & 0 & -1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}
$$

$$
\mathbf{x} = \begin{bmatrix} x'_1 & x_2 & x'_3 & x''_3 & s_2 & e_3 & s_4 \end{bmatrix}^T
$$

Put the problem

minimize $-2x_1 + 3x_2$ subject to $x_1 + x_2 \leq 5$ **x** *≥* 0

in the standard form. Obtain a graphical solution for the original problem and the standard problem.

From the figure, it is obvious that the minimum value of the objective function over the feasible region is $f^* = -10$, and the optimal point is $\mathbf{x}^* = \begin{bmatrix} 5 & 0 \end{bmatrix}^T$.

Change it into a standard form by adding a slack variable *x*3:

minimize
$$
f(\mathbf{x}) = -2x_1 + 3x_2
$$

subject to $x_1 + x_2 + x_3 = 5$
 $\mathbf{x} \ge 0$

*^x*³ The minimum of the objective function is at $\mathbf{x}^* = \begin{bmatrix} 5 & 0 & 0 \end{bmatrix}^T$. The optimal solution is the same like the original problem as the slack variable x_3 is set to zero.

How can we find the optimal vertex?

- 1. Joaquim R. R. A. Martins, Andrew Ning, "*Engineering Design Optimization*," Cambridge University Press, 2021.
- 2. Mykel J. kochenderfer, and Tim A. Wheeler, "*Algorithms for Optimization*," The MIT Press, 2019.
- 3. Ashok D. Belegundu, Tirupathi R. Chandrupatla, "Optimization Concepts and Applications in Engineering," Cambridge University Press, 2019.
- 4. Laurent Lessarn , "*Introduction to Optimization*," Lecture Note, University of Wisconsin–Madison.