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Objective

At the end of this chapter you should be able to:
▶ Mathematically define the optimality conditions for an unconstrained problem.
▶ Describe, implement, and use line-search-based methods.
▶ Gradient Descent based method

2 / 44



Unconstrained optimization problems

Determine the objective function for building a minimum cost cylinderical
refrigeration tank of volume 50 m3 , if the circular ends cost $ 10 per m2 , the cylindrical
wall costs $6 per m2 , and it costs $80 per m2 to refrigerate over the useful life.

f(x, L) = (10)(2)

(
πx2

4

)
+ (6)(πxL) + 80

(
(2)

πx2

4
+ πxL

)
= 45πx2 + 86πxL

L =
(50)(4)

πx2
=

200

πx2

f(x) = 45πx2 +
17200

x

One problem is minimize f(x) for all real x. How!
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Unconstrained optimization problems

We consider unconstrained optimization problems with continuous design variables,

minimize
x

f(x),

where x = [x1, . . . , xn] is composed of the design variables that the optimization
algorithm can change.

Minimum Points:
▶ the point x∗ is a weak local minimum if there exists a δ > 0 such that

f(x∗) ≤ f(x) for all x such that |x − x∗| < δ, that is f(x∗) ≤ f(x) for all x in a
δ-neighborhood of x∗ .

▶ the point x∗ is a strong local minimum if there exists a δ > 0 such that
f(x∗) < f(x) for all x such that |x − x∗| < δ.

▶ x∗ is a global minimum if f(x∗) < f(x) for all x
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Unconstrained optimization problems

x1 x2Feasible region

A

f(x)

B

C

D
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Optimality Conditions

A point x∗ is a local minimum if f(x∗) ≤ f(x) for all x in the neighborhood of x∗ . A
second-order Taylor series expansion about x∗ for small steps of size p yields

f(x∗ + p) = f(x∗) +∇f(x∗)T p +
1

2
pT H(x∗)p + . . .

f(x∗ − p) = f(x∗)−∇f(x∗)T p +
1

2
pT H(x∗)p + . . .

For x∗ to be an optimal point, we must have f(x∗ + p) ≥ f(x∗) for all p. This implies
that

∇f(x∗)T p +
1

2
pT H(x∗)p ≥ 0 and −∇f(x∗)T p +

1

2
pT H(x∗)p ≥ 0 ∀p.

The magnitude of p is small, the second term can be neglected. Therefore, we require
that

∇f(x∗)T p ≥ 0 and −∇f(x∗)T p ≥ 0 =⇒ ∇f(x∗) = 0

6 / 44



Optimality Conditions

The condition ∇f(x∗) = 0 is called the first-order necessary optimality condition.

Because the gradient term has to be zero, we must satisfy the remaining term in the
previous inequality, that is

pT H(x∗)p ≥ 0 ∀p or H(x∗) ⪰ 0

▶ These two conditions ∇f(x∗) = 0 and H(x∗) ⪰ 0 are necessary conditions for a
local minimum but not sufficient.

▶ In some direction pT H(x∗)p can be zero. We need to check the third-order
term. If it is a minimum, it is a weak minimum.

▶ To have the sufficient optimality condition, H(x∗) must be positive definite.
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Quadratic function with different types of Hessian
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Optimality Conditions: Finding minima analytically

Consider the following function of two variables:

f(x1, x2) = 0.5x41 + 2x31 + 1.5x21 + x22 − 2x1x2

Let the gradient equal to zero,

∇f(x1, x2) =

 ∂f
∂x1

∂f
∂x2

 =

[
2x31 + 6x21 + 3x1 − 2x2

2x2 − 2x1

]
=

[
0

0

]

From the second row, we have x1 = x2 . Substituting this in to the first equation yields

x1
(
2x21 + 6x1 + 1

)
= 0 =⇒ x1 = 0,−2.8223,−0.1771

The solution of this equation has three points: xA = (0, 0), xB = (−2.8223,−2.8223),
and xC = (−0.1771,−0.1771). (see ch2/optimal_condition.jl)
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Optimality Conditions: Finding minima analytically

To clarify these three points, we need to find the Hessian matrix.

H(x1, x2) =


∂2f

∂x2
1

∂2f
∂x1∂x2

∂2f
∂x1∂x2

∂2f

∂x2
2

 =

[
6x21 + 12x1 + 3 −2

−2 2

]

For each point, we have

H(xA) =

[
3 −2

−2 2

]
, H(xB) =

[
16.9373 −2

−2 2

]
, H(xC) =

[
1.0627 −2

−2 2

]

The eigenvalues are λA = (0.438, 4.561), λB = (1.737, 17.200) , and
λC = (−0.523, 3.586), respectively. The first two eigenvalues show the evidence of
the local minimum points, while the last one addresses the saddle point.
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Optimality Conditions
Example: Finding minima analytically

x1

−4 −3 −2 −1 0 1 2

x 2

−4

−3

−2

−1

0

1

2

global minimum

saddle point

local minimum
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Optimality Conditions
Example: Finding minimum analytically

We want to

minimize
x

45πx2 −
17200

x

We set

∇f = 90πx−
17200

x2
= 0 =⇒ x3 =

17200

90π
= 60.833

We have x = 3.93 m and L = 200/(πx2) = 4.12 m.
The cost is

f(x∗) = 45(x∗)2 +
17200

x∗
= 6560

Since H(x∗) = 90π + (3(17200))/(x∗)3 = 1132.85, it is strictly positive. Thus the
solution is a strict or strong minimum.
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Optimality Conditions
Example: Maximize Problem

Determine the dimensions of an open box of maximum volume that can be
constructed form an A4 sheet 210 mm × 297 mm by cutting four squares of side x from
the corners and folding and gluing the edges as shown in Fig.
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Optimality Conditions
Example: Maximize Problem

The problem is to

maximize
x

V (x) = (297− 2x)(210− 2x)x = 62370x− 1014x2 + 4x3

We set f(x) = −V (x) = −62370x+ 1014x2 − 4x3 . Setting ∇f(x) = 0, we get

∇f(x) = −62370 + 2028x− 12x2 = 0 =⇒ x = 40.423 and 128.577 mm.

The possible solution of x is only the first one, where x∗ = 40.423 mm. The
H(x∗) = 2028− 24x∗ = 1057.848 > 0 . implies that x∗ is a strict minimum of f(x) or
maximum of V (x).
The maximum value of the box is 1128.5 cm3 .
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Convex Sets

▶ A set S is called a convex set if for any two points in the set, every point on the
line joining the two points is in the set.

▶ Alternatively, the S is convex if for every pair of points x1 and x2 in S, and every
α such that 0 < α < 1, the point αx1 + (1− α)x2 is in S.

▶ example of convex sets:
▶ the set of all real numbers R is a convex set.
▶ any closed interval of R is also a convex set.
▶ A = {x ∈ R : 0 ≤ x ≤ 1}, B = {x ∈ R : 2 ≤ x ≤ 3} and S = A ∪ B. S is

not a convex set.

x1

x2

x1

x2

convex set nonconvex set 15 / 44



Convex Functions

▶ A function f(x) defined over a convex set Rc is said to be convex if for every
pair of points x1, x2 ∈ Rc and every real number 0 ≤ α ≤ 1 , the inequality

f(αx1 + (1− α)x2) ≤ αf(x1) + (1− α)f(x2)

hold. If x1 ̸= x2 and

f(αx1 + (1− α)x2) < αf(x1) + (1− α)f(x2)

then f(x) is said to be strictly convex.
▶ If ψ(x) is defined over a convex set Rc and f(x) = −ψ(x) is convex, then ϕ(x) is

said to be concave. If f(x) is strictly convex, ψ(x) is strictly concave.

is located in Rc
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Properties Convex Functions

f(x)

xx1 x2x = αx1 + (1− α)x2

f(x)

αf(x1) + (1− α)f(x2)

f(x1)
f(x2)

Properties of Convex Functions
▶ If f has continuous first derivatives then f is convex over a convex set S if and

only if for every x and y in S, f(y) ≥ f(x) + f ′(x)(y − x) This means that the
graph of the function lies above the tangent line drawn at point show in above
figure.
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Properties Convex Functions

▶ If f has continuous second derivatives then f is convex over a convex set S if
and only if for every x in S,

f ′′(x) ≥ 0

▶ If f(x∗) is a local minimum for a convex function f on a convex set S, then it is
also a global minimum.

▶ If f has continuous first derivatives on a convex set S and for a point x∗ in S,
f ′(x∗)(y− x∗) ≥ 0 for every y in S, then x∗ is a global minimum point of f over
S.

Example: Convex Function

Prove that f = |x|, x ∈ R1 , is a convex function. Using the triangular inequality
|x+ y| ≤ |x|+ |y|, we have, for any two real numbers x1 and x2 and 0 < α < 1,

f(αx1 + (1− α)x2) = |αx1 + (1− α)x2| ≤ α|x1|+ (1− α)|x2|

≤ αf(x1) + (1− α)f(x2)

18 / 44



Descent Direction

Consider an unconstraint problem

minimize
x∈Rn

f(x)

Definition: Descent Direction

A vector d ∈ Rn is called a descent direction for f at x if moving a small amount
in that direction decreases the function value.

∃α > 0 such that f(x + αd) < f(x)

To check the descent direction, we could use the First-order Condition. From a
first-order Taylor approximation around x:

f(x + αd) ≈ f(x) + α∇f(x)T d

For small α > 0, we will have decrease if: ∇f(x)T d < 0. This condition defines a
descent direction. 19 / 44



Example: Steepest Descent

The most common descent direction is the negative gradient:

d = −∇f(x)

Why? Because:

∇f(x)T (−∇f(x)) = −∥∇f(x)∥2 < 0, where ∇f(x) > 0

so it always guarantees descent.
▶ A descent direction is any vector d such that ∇f(x)T d < 0

▶ It ensures that moving a little in direction d decreases f(x)
▶ The negative gradient −∇f(x) is the steepest descent direction.
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Example: Steepest Descent
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Gradient Based Optimization

A Gradient descent is one of the most popular and versatile technique in all of
optimization.

▶ A local minimum of a smooth, unconstrained objective function f(x will be a
point x∗ with zero gradient, ∇f(x∗) = 0, and positive semi-definite Hessian,
∇2f(x∗) > 0.

▶ The idea is find the point x where ∇f(x) = 0. We known as a root finding
problem.

▶ However, in general, the function ∇f(x) is too complex to solve for its roots. We
need to use iterative method to obtain a sequence of point xk that eventually
converge towards the local minimum x∗ :

f(x0) ≥ f(x1) ≥ f(x2) ≥ · · · ≥ f(x∗)

f(xk+1)− f(xk) < 0 =⇒ xk+1 = F (xk)
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Two Approaches to Finding and Optimum

Line search approach Trust-region approach

23 / 44



Basic Concept

Consider a problem

minimize
x

f(x), x ∈ Rn

▶ Most numerical methods require a starting design or point which we call x0
(initial point).

▶ We then determine the direction of travel d0 .
▶ A step size α0 is then determined based on minimizing f as much as possible

and the design point is updated as x1 = x0 + α0d0 .
▶ The process of where to go and how far to go are repeated from x1 or

xk+1 = xk + αkdk .
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Basic Concept: Example

Given f(x1, x2) = x21 + 5x22 , a point x0 = [3 1]T , f0 = f(x0) = 14.

1. Assume we already have a descent direction d = [−3 − 5]T . We need to find a
step size α.

2. Construct f(α) = f(x0 + αd) along the direction d and provide a plot of f(α)
versus α, for α ≥ 0. We have x(α) = x0 + αd = [3− 3α, 1− 5α]T and
f(α) = (3− 3α)2 + 5(1− 5α)2 .

®
0.0 0.1 0.2 0.3 0.4 0.5

f
(®
)

5
6
7
8
9
10
11
12
13
14
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Basic Concept : Example

2. Find the slope df(α)/dα) at α = 0. Verify that this equal ∇f(x0)T d (direction
derivative). We have

df(α)

dα

∣∣∣∣
α=0

= (−6(3− 3α)− 50(1− 5α))|α=0 = −68

∇f(x0)T d =
[
2(3) 10(1)

] [−3

−5

]
= −68

3. Minimize f(α) with respect to α, to obtain step size α0 . Given the corresponding
new point x1 and value of f1 = f(x1) . We have df(α)/dα = 0 or

df(α)

dα
= −6(3− 3α)− 50(1− 5α) = 0 =⇒ 268α = 68 or α = 0.2537

x1 =

[
3

1

]
+ α0

[
−3

−5

]
=

[
2.2388

−0.2687

]
, f(x1) = 5.3732, less than f0 = 14.
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Basic Concept : Example

2. Provide a plot showing contours of the function, steepest descent direction x0
and x1 .

x1

−3 0 3

x 2

−3

0

3

x0

x1
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Basic Concept : Example

We want to design the width and height of
the rectangular cross-section to increase
the bending stress defined by

σ0 =
6M

wh2
, whereM is a moment.

With the initial design x = (w, h) = (1, 3), we have

σ0 =
6(2000× 24)

1(32)
= 32, 000psi

Using d = [−1/
√
5 − 2/

√
5]T and α = 0.2 we have

x1 = x0 + αd =

[
1

3

]
+ 0.2

[
−1/

√
5

−2/
√
5

]
=

[
0.9106

2.8211

]
, σ1 = 71, 342 psi
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Gradient Descent Method

Gradient descent seeks to find a local minima of an objective function f(x) by taking
iterative steps in the negative gradient direction.

▶ The gradient of a function ∇f(x) determines the direction of locally steepest
ascent, and so the negative gradient −∇f(x) is the direction of locally steepest
descent. The gradient algorithm is:

xk+1 = xk − α∇f(xk)

where α is the step size (learning rate)
▶ The method is based on a first-order Taylor series approximation of f(x)

f(x) ≈ f(x0) +∇f(x0)T (x − x0)

▶ There are two questions: stability and convergence of the algorithm.
▶ How to choose a good step size α. If α is too large, the iteration will be unstable

or barely stable (overshoot the minimum, causing oscillations, or even
divergence). If α is too small, the iteration will converge very slowly, making it
ineffective for problems. 29 / 44



Gradient Descent Method: Fixed Step Size

The simplest approach to determine the step-size α is fixed step size.
▶ A fixed step-size α is good for a convex objective function f(x) with a

well-conditioned Hessian ∇2f(x).
▶ We can show a simple example with quadratic objective to see the effect of the

condition number of ∇2f(x) on a fixed-step gradient descent algorithm.
▶ Fixed-step schemes are simple, but may require tuning for adequate

convergence.
▶ Consider an unconstrained optimization problem:

minimize
x∈R2

1

2
xT Qx,Q =

[
2 1

1 3

]

We will solve the problem, using the gradient descent method with
α = 0.01, 0.06, 0.543.
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Gradient Descent Method: Fixed Step Size

x1

−2 −1 0 1 2

x 2

−2

0

2
x0

x ∗

x1

−2 −1 0 1 2

x 2

−2

0

2
x0

x ∗

x1

−2 −1 0 1 2

x 2

−2

0

2
x0

x ∗

Iteration
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4

α = 0.01 with 497 iterations α = 0.4 with 13 iterations

α = 0.543 with 293 iterations α = 0.01

α = 0.4

α = 0.543
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Gradient Descent Method: Analysis

▶ After we have the direction vector dk at the point xk . If we move along dk the
design variables and the objective function depend only on α as

x(α) = xk + αdk, f(α) = f(xk + αdk)

αk = arg minimize
α

f(xk + αkdk) =⇒ ∂f(xk + αdk)

∂αk
= 0

The optimization above implies that the directional derivative equals zero:

∇f(xk + αdk)
T dk = 0, dk+1 = −∇f(xk + αdk)

dT
k+1dk = 0, dk+1 and dk are orthogonal. (source of zig-zags)

▶ In the steepest descent method, the direction vector is −∇f(xk) resulting in
the slope at the current point α = 0 being

df(α)

dα

∣∣∣∣
α=0

= ∇f(xk)T (−∇f(xk)) = −∥∇f(xk)∥2 < 0

Implying a move in a downhill direction.
32 / 44



Gradient Descent Method: Zig-Zags

x1

−2 −1 0 1 2

x 2

−2

0

2
x0

x ∗

α = 0.4 with 13 iterations
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The Steepest Descent Method: Stoping Criteria

▶ Starting from an initial point, we determine a direction vector and a step size,
and obtain a new point as xk+1 = xk + αkdk .

▶ The question is to know when to stop the iterative process. We have two stop
criteria to discuss here.

▶ First Befor performing the step-size, the necessary condition for optimality is
checked:

∥∇f(xk)∥ ≤ εG,

where ϵG is a tolerance on the gradient and is supplied by the user. This
indicates you are near a stationary point.

▶ Second: We check the successive reductions in f as a criterion for stopping.

|f(xk+1)− f(xk)| ≤ εA + εR|f(xk)|

where εA = absolute tolerance on the change in function value and εR =

relative tolerance. Only if the condition is satisfied for two consecutive
iterations is the descent process stopped. 34 / 44



Gradient Descent Method: Fixed Step Size

Steepest Descent
Require: x0, εG , εA, εR
k = 0, N = max_number
while k < N do

Compute ∇f(xk)
if ∥∇f(xk)∥ ≤ εG then

Stop
else if then

dk = −∇f(xk)
end if
xk+1 = xk + αkdk ,
if |f(xk+1)− f(xk)| ≤ εA + εR|f(xk)| then

Stop
else

k = k + 1, xk = xk+1

end if
end while

35 / 44



Gradient Descent Method: Convergence

Definition: Lipschitz continuity

A function f is Lipschitz continuous with Lipschitz constant L if

|f(x1)− f(x2)| ≤ L∥x1 − x2∥ ∀x1, x2

▶ If f(x) is convex and Lipschitz continuous with Lipschitz constant L , then
gradient descent with a step size α = 1/L is

xk+1 = xk −
1

L
∇f(xk)

▶ achieves the sublinear rate

f(xk)− f(x∗) ≤ L

2k
∥x0 − x∗∥2, k ≥ 1

Thus the convergence rate is O(1/k), i.e., sublinear in k. (the rate is slower than
O(k))
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Gradient Descent Method: Convergence

▶ If f(x) is strongly convex, the convergence rate is improved. A function is called
strongly convex if

f(y) ≥ f(x) +∇f(x)T (y − x) + µ

2
∥y − x∥2, x, y ∈ R2, µ > 0

In this case, the convergence rate is:

f(xk) = f(x∗) ≤ L

2

(
1−

µ

L

)k
∥x0 − x∗∥2
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Gradient Descent Method: Stability

▶ Consider a quadratic function f(x) = 1
2

xT Qx, where Q ∈ Rn×n is a symmetric
positive definite matrix. The gradient is

∇f(x) = Qx =⇒ xk+1 = xk − αQxk = (I − αQ)xk

▶ Then the update rule is simply a discrete-time linear system is

xk+1 = (I − αQ)xk = T−1(I − αQ)T = I − αD

▶ If I − αD is diagonal, then the eigenvalues of it is 1− αλi . From the linear
discrete-time system theory, the system is stable if |1− αλi| < 1 ∀i. This may
be rewritten as

−1 < 1− αλi < 1 =⇒ −2 < −αλi < 0 =⇒ 0 < α <
2

λmax
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Gradient Descent Method: Optimal Step Size

Now we want to determine an optimal step-size α for fastest convergence of the
gradient descent algorithm.

▶ The optimal step size for gradient descent with a quadratic objective function is
determined by the spectral radius of (I − αQ), which is hte largest absolute
eigenvalue:

ρ (I − αQ) = max
i

|1− αλi|.

▶ To minimize the convergence rate, we choose α such that ρ (I − αQ) is as small
as possible. (To get the largest α.)

▶ We set the optimal value at
|1− αλmin| = |1− αλmax| =⇒ 1− α∗λmin = −(1− α∗λmax)

α∗ =
2

λmin + λmax

▶ The best possible performance is limited by the ratio of eigenvalues

κ =
λmax
λmin
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Gradient Descent Method: Optimal Step Size

f(x) = 1
2
xT

[
2 0

0 2γ

]
x, γ = 3. The Hessian ∇2f(x) is

[
2 0

0 6

]
, then α = 2

8
= 0.25

x1

−2 −1 0 1 2

x 2

−2

0

2
x0

x ∗

α = 0.25 with 24 iterations
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Gradient Descent Method: Optimal Step Size

f(x) = 1
2
xT

[
2 0

0 2γ

]
x, γ = 5. The Hessian∇2f(x) is

[
2 0

0 10

]
, then α = 2

12
= 0.167

x1

−2 −1 0 1 2

x 2

−2

0

2
x0

x ∗

α = 0.17 with 42 iterations
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Gradient Descent Method: Optimal Step Size

Julia Code:

1 function gradient_descent(f, �f, x0; α=0.1, ε_G=1e-6, N=100)
2 xgra = zeros(length(x0), N)
3 xgra[:, 1] = x0
4
5 for i in 2:N
6 xgra[:, i] = xgra[:, i-1] - α * �f(xgra[:, i-1])
7 if norm(�f(xgra[:, i])) <= ε_G
8 return xgra[:, 1:i]
9 end
10 end
11 return xgra
12 end
13 #--------------------------------------------------
14 f(x) = x[1]^2 + 2x[2]^2
15 �f(x) = [2x[1], 4x[2]]
16 x0 = [1.0, 1.0]
17
18 result = gradient_descent(f, �f, x0)
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Gradient Descent Method: Optimal Step Size

Matlab Code:

1 f = @(x1, x2) [x1; x2]' *[2 0; 0 2*2]*[x1; x2]; % gamma = 2
2 gf = matlabFunction(gradient(f(x1,x2),[x1,x2]));
3
4 N = 2000; X = zeros(N,2); EG = 1e-10; EA = 1e-10; ER = 1e-10; th0 = 1e-5;
5
6 X(1,:) = x0;
7 for k = 2:N
8 % first criteria
9 if norm(gf(x0(1), x0(2))) <= EG
10 break;
11 end
12 % transpose to make a column vector
13 alpha = 0.3
14 % new point
15 x0 = x0 - alpha*gf(x0(1), x0(2)))';
16 X(k,:) = x0;
17
18 % check second criteria
19 nX = abs(fobj(X(k,:)) - fobj(X(k-1,:)));
20 if nX < EA + ER * abs(fobj(X(k-1,:)))
21 break;
22 end
23 end 43 / 44
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