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General Form

The General Form of Optimization Problem

minimize f(x)
subject to gi(x) ≤ 0, i = 1, . . . ,m

hj(x) = 0, j = 1, . . . , l

xL ≤ x ≤ xU

▶ x ∈ Rn is the optimization variable
▶ f(x) : Rn 7→ R is the objective or cost function
▶ gi : Rn 7→ R, i = 1, . . . ,m, are the inequality constraint functions
▶ hi : Rn 7→ R, i = 1, . . . , l, are the equality constraint functions.
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Standard form: Top Brass Data

Top Brass Trophy Company makes large championship trophies for
youth athletic leagues. At the moment, they are planning pro-
duction for fall sports: US football and football. Each US football
trophy has a wood base, an engraved plaque, a large brass US football

on top, and returns $12 in profit. Football trophies are similar except

that a brass football ball is on top, and the unit profit is only $9.

Since the US football has an asymmetric shape, its base requires 4

board feet of wood; the football base requires only 2 board feet. At

the moment there are 1000 brass US footballs in stock, 1500 football

balls, 1750 plaques, and 4800 board feet of wood. What trophies

should be produced from these supplies to maximize total profit
assuming that all that are made can be sold?

US football football both
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Standard form: Top Brass Data

Recipe for building each trophy

wood plaques US footballs soccer balls profit

US football 4 ft 1 1 0 $ 12
football 2 ft 1 0 1 $ 9

Quantity of each ingredient in stock

wood plaques US football balls Football balls

in stock 4800 ft 1750 1000 1500
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Top Brass Problem
Example

maximize
f,s

12f + 9s

subject to 4f + 2s ≤ 4800

f + s ≤ 1750

0 ≤ f ≤ 1000

0 ≤ s ≤ 1500

Matrix form

maximize
x

cT x

subject to Ax ≤ b

x ≥ 0

This is in matrix form, with:

A =


4 2

1 1

1 0

0 1

 , b =


4800

1750

1000

1500

 , c =

[
12

9

]
, x =

[
f

s

]
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Graphical Method: Example

Define z = 12f + 9s, where z = profit. Here s = − 12
9
f + z

9
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Solve Top Brass Problem with MATLAB

1 % Objective function (note: linprog minimizes, so we negate the coefficients)
2 f_obj = [-12; -9]; % Maximize becomes minimize of negative
3
4 % Inequality constraints: A*x ≤ b
5 A = [4, 2;
6 1, 1];
7 b = [4800;
8 1750];
9
10 % Variable bounds
11 lb = [0; 0]; % Lower bounds for f and s
12 ub = [1000; 1500]; % Upper bounds for f and s
13
14 % Solve using linprog
15 options = optimoptions('linprog','Display','none'); % Suppress output
16 [x_opt, fval] = linprog(f_obj, A, b, [], [], lb, ub, options);
17
18 % Display results
19 f = x_opt(1);
20 s = x_opt(2);
21 max_profit = -fval; % Negate to get the original maximized value
22
23 fprintf('Optimal f: %.2f\n', f);
24 fprintf('Optimal s: %.2f\n', s);
25 fprintf('Maximum profit: %.2f\n', max_profit);

MATLAB Code: Top Brass Problem
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Solve Top Brass Problem with Julia

1 using JuMP, GLPK
2
3 m = Model(GLPK.Optimizer)
4 @variable(m, 0 <= f <= 1000) # US football trophies
5 @variable(m, 0 <= s <= 1500) # football trophies
6
7 @constraint(m, 4f + 2s <= 4800) # total board feet of wood
8 @constraint(m, f + s <= 1750) # total number of plagues
9
10 @objective(m, Max, 12f + 9s) # maximize profit
11
12 # Printing the prepared optimization model
13 print(m)
14
15 # Solving the optimization problem
16 JuMP.optimize!(m)
17
18 # Printing the optimal solutions obtained
19 println("Build ", JuMP.value(f), " US football trophies.")
20 println("Build ", JuMP.value(s), " footbal trophies.")
21 println("Total profit will be \$", JuMP.objective_value(m))

Julia code: Top Brass Problem
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General Form

A Simple Problem:

minimize
x

f(x)

subject to gi(x) ≤ 0, i = 1, . . . ,m

hj(x) = 0, j = 1, . . . , l

Example:

minimize
x

(x1 − 2)2 + (x2 − 1)2

subject to x2 − 2x1 = 0

x2
1 − x2 ≤ 0

x1 + x2 ≤ 2 x1

0 2 4

x 2

−1

0

1

2

3

Unconstraint

Only EC

EC and IC

 Objective function contours

Feasible region

▶ Unconstrained Optimal Solution: x =
[
2 1

]
▶ Solution with only equality con.: x =

[
0.8 1.6

]
(The constraint must be active.)

▶ Solution with both types of con.: x =
[
0.67 1.33

]
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Graphical Solution of One- and Two-Variable Problems

For n = 1 or n = 2, we could plot the NLP problem to get the solution. The example
shows the plotting of the feasible region Ω and objective function contours for the
NLP problem with n = 2 as follow:

x1

−3 −2 −1 0 1

x 2

−2

0

2

Optimal Point

objective function contours

Feasible region

minimize
x1,x2

(x1 + 2)2 − x2

subject to
x2
1

4
+ x2 − 1 ≤ 0

2 + x1 − 2x2 ≤ 0

The real optimal solution is obtained as

x∗
1 = −1.6, x∗

2 = 0.36

Julia code: Graphical Method
Matlab code: Graphical Method
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http://inc.kmutt.ac.th/~sudchai.boo/Teaching/inc491s/julia/lecture2/graphical_method_ex1.html
http://inc.kmutt.ac.th/~sudchai.boo/Teaching/inc491s/matlab/lecture2/graphical_method.m


Chaâteau Laupt-Himum

The Château Laupt-Humum produces rosé wine and red wine by
buying grapes from local producers. This year they can buy up to
one ton of Pinot (a read grape) from a winegrower, paying e3 per kilo. They
can then vinify the grapes in two ways: either as a white wine to obtain
a rosé wine or as a red wine to get Pinot Noir , a full-bodied red wine.
The vinification of the rosé wine costs e2 per kilo of grapes , while that of

the Pinot Noir costs e3.50 per kilo of grapes.
In order to take into account economies of scale, the Château wants to ad-
just the price of its wine to the quantity produced. The price for one liter of
rosé is e15 minus a rebate of e2 per hundred liters produced Similarly, they sell

the Pinot Noir at a price of e23 per liter, minus a rebate of e1 per hundred liters
produced.
How should the Château Laupt-Himum be organized in order to maximize its profit,
when a kilo of grapes produces 1 liter of wine?

rosé wine red wine Pinot Noir
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Chaâteau Laupt-Himum

There are three variables:
▶ x1 is the number of liters of rosé wine to produce each year,
▶ x2 is the number of liters of Pinot Noir to produce,
▶ x3 is the number of kilos of grapes to buy.

The objective is to maximize the profit. We have (terms in red color are rebate.)
▶ Each liter of rosé wine that is sold gives (in e): 15− 2

100
x1

▶ Each liter of Pinot Noir gives (in e): 23− 1
100

x2

▶ The revenues corresponding to the production of x1 liters or rosé wine and x2

liters of Pinot Noir are equal to x1

(
15− 2

100
x1

)
+ x2

(
23− 1

100
x2

)
▶ Grape is e3 per kilo, and a liter of wine need one kilo of vinified grapes, which

costs e2 for the rosé and e3.50 for the Pinot Noir: 2x1 + 3.5x2 + 3x3

The the objective function is

f(x) = x1

(
15−

2

100
x1

)
+ x2

(
23−

1

100
x2

)
− (2x1 + 3.5x2 + 3x3),

and the constraints are x1, x2, x3 ≥ 0, and x1 + x2 ≤ x3
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Chaâteau Laupt-Himum

We combine the modeling steps to obtain the following optimization problem:

maximize
x1,x2,x3

f(x) = x1

(
15−

2

100
x1

)
+ x2

(
23−

1

100
x2

)
− (2x1 + 3.5x2 + 3x3)

subject to x1 + x2 ≤ x3

x3 ≤ 1000

x1 ≥ 0

x2 ≥ 0

x3 ≥ 0

Note: The problem is higher than two-dimension space, so it cannot be solved by
using graphical method.
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Optimization problems

We consider the following optimization problem with continuous design variables,

minimize
x

f(x),

subject to h(x) = 0

g(x) ≤ 0

x ∈ X

where x = [x1, . . . , xn] is composed of the design variables that the optimization
algorithm can change.

Minimum Points:
▶ the point x∗ is a weak local minimum if there exists a δ > 0 such that

f(x∗) ≤ f(x) for all x such that |x − x∗| < δ, that is f(x∗) ≤ f(x) for all x in a
δ-neighborhood of x∗ .

▶ the point x∗ is a strong local minimum if there exists a δ > 0 such that
f(x∗) < f(x) for all x such that |x − x∗| < δ.

▶ x∗ is a global minimum if f(x∗) < f(x) for all x 14 / 47



Unconstrained optimization problems

x1 x2Feasible region

A

f(x)

B

C

D
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Existence of a Minimum and a Maximum: Weierstrass Theorem
closed, bounded, and continuous

Briefly details of important terms:
▶ dom f here means domain of the function.
▶ The set {x : |x| ≤ 1} is an example of a closed set while {x : |x| < 1} is an open

set.
▶ A set is bounded if it is contained within some sphere of finite radius, i.e. for any

point a in the set, aT a < c, where c is a finite number.
▶ For example, the set of all positive integers, {1, 2, . . .}, is not bounded.
▶ A set that is both closed and bounded is called a compact set.

Let f(x) be a continuous function defined over a closed and bounded set Ω ⊂
dom f . Then, there exist points x∗ and x∗∗ in Ω where f attains its minimum and
maximum, respectively. That is f(x∗) and f(x∗∗) are the minimum and maximum
values of f in the set.
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Existence of a Minimum and a Maximum: Weierstrass Theorem

Let x∗ and x∗∗ denote the solutions, if one exists, to the minimization, and
maximization problems

minimize f(x)

subject to x ∈ Ω

maximize f(x)

subject to x ∈ Ω

Consider a problem

minimize x subject to 0 < x ≤ 1

This simple problem does not have a solution. We observe that the constraint set Ω is
not closed. Re-writing the constraint as 0 ≤ x ≤ 1 results in x = 0 being the solution.
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Existence of a Minimum and a Maximum: Weierstrass Theorem

Consider the cantilever beam in Fig. with a tip load P and tip deflection δ. The
cross-section is rectangular with width and height equal to x1, x2 , respectively. It is
desired to minimize the tip deflection with given amount of material, or

minimize δ

subject to A ≤ A0

This problem does not have a solution. It is ill-posed. This can be seen by substituting
the beam equation

δ =
PL2

3EI
=

c

x1x3
2

,

where c is a known scalar. Owing to the fact that x2 is cubed in the denominator of
the δ expression, with a given A = x1x2 (the cross section area), the solution will tend
to increase x2 and reduce x1 . That is, the beam will tend to be infinitely slender with
x1 7→ 0, x2 7→ ∞.
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Existence of a Minimum and a Maximum: Weierstrass Theorem

Ω

x1

x2

Look at the feasible region Ω shown that it is unbounded, violating the simple
conditions in Weierstrass theorem.
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Quadratic Forms and Positive Definite matrices

Consider a function

f(x1, x2) = x2
1 − 6x1x2 + 9x2

2

We can write f(x1, x2) in a matrix notation as:

f(x1, x2) =
[
x1 x2

] [ 1 −3

−3 9

][
x1

x2

]
= xT Ax

The matrix A is symmetric since

xT Ax = xT
(A + AT

2

)
x

B =
A + AT

2
is a symmetric matrix.
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Quadratic Forms and Positive Definite matrices
Positive definiteness

positive definiteness

▶ A symmetric matrix A ∈ Rn×n is called positive semidefinite, denoted by
A � 0, if xT Ax ≥ 0 ∀x ∈ Rn .

▶ A symmetric matrix A ∈ Rn×n is called positive definite, denoted by
A � 0, if xT Ax > 0 ∀x ∈ Rn and x 6= 0.

Example Let

A =

[
2 −1

−1 1

]
, for any x =

[
x1 x2

]T
∈ R2

xT Ax =
[
x1 x2

] [ 2 −1

−1 1

][
x1

x2

]
= 2x2

1 − 2x1x2 + x2
2 = x2

1 + (x1 − x2)
2 ≥ 0.

The matrix A is positive semidefinite. Since x2
1 + (x1 − x2)2 = 0 if and only if

x1 = x2 = 0 it follows that A is positive definite. Note: the negative (semi)definite is
just the opposite sign of the positive (semi)definite. 21 / 47



Quadratic Forms and Positive Definite matrices
Positive definiteness

The matrix, whose components are all positive, is note positive definite since for
x =

[
1 −1

]T
, we have

A =

[
1 2

2 1

]
, xT Ax =

[
1 −1

] [1 2

2 1

][
1

−1

]
= −2

eigenvalue characterization (proof is omit.)

Let A be a symmetric n× n matrix. Then
▶ A is positive definite if and only if all its eigenvalues are positive,
▶ A is positive semidefinite if and only if all its eigenvalues are nonnegative,
▶ A is negative definite if and only if all its eigenvalues are negative,
▶ A is negative semidefinite if and only if all its eigenvalues are nonpositive,
▶ A is indefinite if and only if it has at least one positive eigenvalue and at

lease one negative eigenvalue.
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Quadratic Forms and Positive Definite matrices
Positive definiteness

A =

[
1 2

2 1

]
, det(λI − A) =

∣∣∣∣∣λ− 1− 2

−2λ− 1

∣∣∣∣∣ = 0, λ = −1, 3

It is obvious that the matrix A is not positive definite.

Sylvester’s Test for a Positive definite Matrix

Let Ai denote the submatrix formed by deleting the last n− i rows and columns
of A, and let det(Ai) is the determinant of Ai . Then, A is positive definite if and
only if det(Ai) > 0 for i = 1, 2, . . . , n. This is, the determinants of all principal
minors are positive.

▶ A is positive (semi-)definite if and only if all its leading principal minors
are positive, i.e. , det Ai > (≥)0 for all i.

▶ A is negative (semi-)definite if and only if all the leading principal minors
of −A are positive, i.e., det−Ai > (≥)0 for all i

▶ A is indefinite if neither positive or negative definite.
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Quadratic Forms and Positive Definite matrices
Positive definiteness

Consider a matrix A below:

A =

1 2 3

2 5 −1

3 −1 2


We have

A1 = 1 > 0, A2 =

∣∣∣∣∣1 2

2 5

∣∣∣∣∣ = 5− 4 = 1 > 0, A3 =

∣∣∣∣∣∣∣
1 2 3

2 5 −1

3 −1 2

∣∣∣∣∣∣∣ = −56 < 0

Thus , A is not positive definite.
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Quadratic Forms and Positive Definite matrices
Positive definiteness

Check the characteristic of the following matrices:

A =

 1 −2 4

−2 2 0

4 0 −7

 , B =

 4 −2 0

−2 3 0

0 0 50


A is indefinite,and B is positive definite.
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Cn Continuity of a Function

Continuity

The function f is C0 continuous at a point a if : given any sequence {xk} in
dom(f) which converts to a, then f(xk) must converge to f(a). Further, f is
continuous over a set S implies that it is continuous at each pint in S.

C1 and C2 Continuity
Let A be an open set of Rn and f : Rn 7→ R1 . if each of the functions
∂f
∂xi

, i = 1, . . . , n, is continuous on this set then we write f ∈ C1 or that f is C1

continuous or state that f is “smooth”. If each of the functions ∂f
∂xi,∂xj

, 1 ≤ i, j ≤ n,
is continuous on the set, then we write f ∈ C2 .
Example: Consider the function f with dom f ∈ R1 :

f(x) =

0, x ≤ 0

1, x > 0

The sequence xk = 1/k, k = 1, 2, 3, . . . converges (from the right) to a = 0 but the
sequence f(xk) = 1 for all k and does not converge to f(a) = f(0) = 0. Thus, f is
discontinuous at a = 0. 26 / 47



Cn Continuity of a Function

Consider

f(x) =
1

2
max(0, x− 5)2, x ∈ R1

∂f

∂x
= max(0, x− 5)

∂2f

∂x2
=

0 , for x ≤ 5

1 , for x > 5

x
2 3 4 5 6 7 8

f
(x
)

0

1

2

3

4 @f

@x

f(x)

The first derivative is a continuous function, while the second derivative is not
continuous at x = 5. Thus f is only C1 (and not C2) continuous on R1 . (a = 5 and
f ′′(a) = 5 but f ′′(x∞) = 1)

See ch1/positive_def.jl, df/dx = 1
2
(2) max(0, x − 5)d(max(0, x − 5))/dx = max(0, x − 5) 27 / 47



Derivatives and Gradient

We consider differentiable and continuous functions of n variables
x =

[
x1 x2 · · · xn

]T
denoted by f(x) or f(x1, x2, . . . , x3).

▶ The derivative with respect to the ith parameter is given by:

∂f

∂xi
= lim

∆xi→0

f(x1, x2, . . . , xi +∆xi, . . . , xn)− f(x1, x2, . . . , xi, . . . , xn)

∆xi

≈
f(x1, x2, . . . , xi +∆xi, . . . , xn)− f(x1, x2, . . . , xi, . . . , xn)

∆xi

▶ Gradient Vector: Given a function f(x) ∈ C1 , we introduce the gradient vector
∇f , a column vector , as

∇f =
[

∂f
∂x1

, ∂f
∂x2

, . . . , ∂f
∂xn

]T
The gradient evaluated at a point c is denoted by ∇f(c).

28 / 47



Derivatives and Gradient

Example Consider the function:

f(x) = (x1 − 2)2 + (x2 − 1)2 − x1x2

Determine the gradient of the function at the point x0 =
[
1.0 1.0

]T
Solution:

∇f =

[
∂f
∂x1
∂f
∂x2

]
=

[
2(x1 − 2)− x2

2(x2 − 1)− x1

]

At the point x0

∇f =

[
−3

−1

]
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Jacobian

Sometime we need to consider a number of functions at the same time, like the
response of a circuit at a number of frequencies. In this case we have

f(x) =
[
f1 f2 · · · fm

]T
The Jacobian matrix is the matrix combining all these gradients together and is given
by

J(x) =


∇fT

1

∇fT
2

...
∇fT

m

 =


∂f1
∂x1

∂f1
∂x2

· · · ∂f1
∂xn

∂f2
∂x1

∂f2
∂x1

· · · ∂f2
∂xn

...
...

. . .
...

∂fm
∂x1

∂fm
∂x1

· · · ∂fm
∂xn


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Jacobian

Consider the vector of functions f(x) =
[
3x2

1 + x3
2 x3

1 − 2x3

]T
. Determine the

Jacobian at the point x0 =
[
2.0 1.0 1.0

]T

J(x) =
[
∇fT

1

∇fT
2

]
=

[
6x1 3x2

2 0

3x2
1 0 −2

]

At the point x0 , the Jacobian is given by:

J(x0) =
[
∇fT

1

∇fT
2

]
=

[
12 3 0

12 0 −2

]
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Second-order derivatives, Hessian Matrix

The mixed second-order derivativewith respect to the ith and jth parameters is given
by:

∂2f

∂xi∂xj
= lim

∆xj→0

∂f(x1,x2,...,xj+∆xj ,...,xn

∂xi
− ∂f(x1,x2,...,xi,...,xn)

∂xi

∆xj

The gradient of a vector ofm-function, H = ∇g is defined to be a matrix of dimension
(n×m) as

H = ∇g =


∂g1
∂x1

∂g2
∂x1

· · · ∂gm
∂x1

∂g1
∂x2

∂g2
∂x2

· · · ∂gm
∂x2

...
...

. . .
...

∂g1
∂xn

∂g2
∂xn

· · · ∂gm
∂xn

 =



∂2f

∂x2
1

∂2f
∂x1∂x2

· · · ∂2f
∂x1∂xn

∂2f
∂x2∂x1

∂2f

∂x2
2

· · · ∂2f
∂x2∂xn

...
...

. . .
...

∂2f
∂xn∂x1

∂2f
∂xn∂x2

· · · ∂2f
∂x2

n


The Hessian matrix is a symmetric matrix because the order of differentiation does
not make a difference.
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Second-order derivatives, Hessian Matrix

Evaluate the gradient and the Hessian of the function
f(x) = 3x2

1 + 2x1x2 + x1x3 + 2.5x2
2 + 2x2x3 + 2x2

3 − 8x1 − 3x2 − 3x3 at the point

x0 =
[
1.0 −1.0 1.0

]T

∇f(x) = g(x) =

 6x1 + 2x2 + x3 − 8

2x1 + 5x2 + 2x3 − 3

x1 + 2x2 + 4x3 − 3

 ⇒ ∇f(x0) =

−3

−4

0



H =
∂g(x)T

∂x
=

6 2 1

2 5 2

1 2 4


Note:

f(x) =
[
x1 x2 x3

] 3 1 0.5

1 2.5 1

0.5 1 2


x1

x2

x3

+
[
−8 −3 −3

]x1

x2

x3


= xT Qx + bT x =

1

2
xT Hx + bT x

33 / 47



Gradient and Hessian with Matlab

1 syms x1 x2 x3
2
3 f = 3*x1^2 + 2*x1*x2 + x1*x3 + 2.5*x2^2 + 2*x2*x3 ...
4 + 2*x3^2 - 8*x1 - 3*x2 - 3*x3
5
6 g = gradient(f,[x1, x2, x3])
7 h = hessian(f,[x1, x2, x3])
8 g1 = subs(g, [x1, x2, x3], [1, -1, 1])

ans =

 6x1 + 2x2 + x3 − 8

2x1 + 5x2 + 2x3 − 3

x1 + 2x2 + 4x3 − 3

 ans =

 6 2 1

2 5 2

1 2 4



ans =

 −3

−4

0


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Gradient and Hessian with Julia

1 using Symbolics, ForwardDiff
2
3 @variables x1 x2 x3
4
5 f(x) = 3x[1]^2 + 2x[1]x[2] + x[1]x[3] + 2.5x[2]^2 + 2x[2]x[3] +
6 2x[3]^2 - 8x[1] - 3x[2] - 3x[3]
7
8 gf(x) = ForwardDiff.gradient(f,x)
9 Hf(x) = ForwardDiff.hessian(f,x)
10
11 g = gf([x1, x2, x3])
12 h = Hf([x1, x2, x3])
13 g1 = gf([1, -1, 1])
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Directional Derivative

Directional Derivative: The rate of change in a direction p is quantified by a
directional derivative, defined as

∇pf(x) = lim
τ→0

f(x + τp)− f(x)
τ

= ∇fT p = ‖∇f‖‖p‖ cos θ

x1

−2.0 −1.5 −1.0 −0.5 0.0

x 2

0.5

1.0

1.5

2.0

∇f

x

p

∇f Tp

See ch3 Unconstraint/directional_derivative_p84.jl
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Directional Derivative

Consider the following function of two variables: f(x1, x2) = x2
1 + 2x2

2 − x1x2 . The
gradient can be obtained using symbolic differentiation, yielding

∇f(x1, x2) =

[
2x1 − x2

4x2 − x1

]
, ∇f(−1, 1) =

[
−3

5

]
.

Taking the derivative in the normalized direction p =
[

2√
5

− 1√
5

]
, we obtain

∇fT p =
[
−3 5

] [ 2/
√
5

−1/
√
5

]
= −

11
√
5

x1

−1.5 −1.0 −0.5 0.0 0.5

x 2

−0.5

0.0

0.5

1.0

1.5

∇f

x

x + 𝛼p
p
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Directional Derivative

We wish to compute the directional derivative of f(x) = x1x2 at x = [1, 0] in the
direction p = [−1, −1]:

∇f(x) =
[
x2 x1

]T
, ∇pf(x) = ∇f(x)T p =

[
0 1

] [−1

−1

]
= −1

We can also compute the directional derivative as follows:
▶ Introduce a scalar variable α and denote points along the vector p emanating

from x as g(α) = x + αp
▶ Denote the function f(α) = f(g(α)) = f(x + αp). We have

∇pf(x) =
df

dα

∣∣∣∣
α=0

=
∂f

∂g

∣∣∣∣
α=0

∂g

∂α
=

(
∂f

∂x

)T

p = ∇f(x)T p

▶ from above example, we have
g(α) = f(x + αp) = (x1 + αp1)(x2 + αp2) = (1− α)(−α) = α2 − α

g′(α) = 2α− 1, g′(0) = −1
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Curvature and Hessian

The rate of change of the gradient–the curvature–is also useful information because it
tells us if a function’s slope is increasing (positive curvature), decreasing (negative
curvature), or stationary (zero curvature). Given a function f(x1, . . . , xn) ∈ C2 , we
define the matrix of second partial derivatives

Hf (x) = ∇2f =



∂2f

∂x2
1

∂2f
∂x1∂x2

· · · ∂2f
∂x1∂xn

∂2f
∂x2∂x1

∂2f

∂x2
2

· · · ∂2f
∂x2∂xn

...
...

. . .
...

∂2f
∂xn∂x1

∂2f
∂x1∂x2

· · · ∂2f
∂x2

n


The Hessian is a symmetric matrix with n(n+ 1)/2 independent elements.
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Curvature and Hessian

We can find the rate of change of the gradient in an arbitrary normalized direction p
by taking the product Hp .

Hp = ∇p(∇f(x)) = lim
τ→0

∇f(x + τp)−∇f(x)
τ

To find the curvature of the one-dimensional function along a direction p, we need to
project Hp onto direction p as

∇p(∇pf(x)) = (HT p)T p = pT Hp

which yields a scalar quantity. If we want to get the curvature in the original units of x,
p should be normalized.
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Curvature and Hessian

Consider f(x1, x2) = x2
1 + 2x2

2 − x1x2 . The Hessian of this quadratic is

H = ∇(∇f(x)) = ∇
([

2x1 − x2

4x2 − x1

])
=

[
2 −1

−1 4

]

To find the curvature in the direction p =
[
−1/2 −

√
3/2
]T
, we compute

pT Hp =
[
− 1

2
−

√
3

2

] [ 2 −1

−1 4

][
− 1

2

−
√
3

2

]
=

7−
√
3

2
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Taylor’s Theorem, Linear and Quadratic Approximations

Suppose that f(x) ∈ Cp on an interval J = [a, b]. If x0, x belong to J, then there exists
a number γ between x0 and x such that

f(x) ≈ f(x0) +
f ′(x0)

1!
(x− x0) +

f ′′(x0)

2!
(x− x0)

2

+ · · ·+
f (p−1)(x0)

(p− 1)!
(x− x0)

(p−1) +
f (p)(x0)

p!
(x− x0)

p

▶ Linear approximation: fl(x) ≈ f(x0) + f ′(x0)(x− x0)

▶ Quadratic approximation: fq(x) ≈ f(x0) + f ′(x0)(x− x0) +
1
2
f ′′(x0)(x− x0)2

For n-dimension we have

fq(x) ≈ f(x0) +∇f(x0)T (x − x0) +
1

2
(x − x0)T H(x0)(x − x0) + H.O.T.
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Taylor’s Theorem, Linear and Quadratic Approximations

Given f(x) = 2x1 + x2
x1
. Construct linear and quadratic approximations to the original

function f(x) at x0 = [1 0.5]T

∇f(x) =

2− x2

x2
1

1
x1

 , H(x) =


x2

x3
1

− 1
x2
1

− 1
x2
1

0


The linear approximation is

fl(x) ≈ f(x0) +∇f(x0)T (x − x0) = 2.5 +
[
1.5 1

]T [ x1 − 1

x2 − 0.5

]
= 0.5 + 1.5x1 + x2

The quadratic approximation is

fq(x) ≈ f(x0) +∇f(x0)T (x − x0) +
1

2
(x − x0)T H(x0)(x − x0)
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Taylor’s Theorem, Linear and Quadratic Approximations

fq(x) ≈ 0.5 + 1.5x1 + x2 +
1

2

[
(x1 − 1) (x2 − 0.5)

] [ 1 −1

−1 0

][
x1 − 1

x2 − 0.5

]

= 0.5 + x1 + 2x2 − x1x2 +
1

2
x2
1

Plotting: We need to plot, in
variable-space or x-space, the contours

f(x) = c, fl(x) = c, fq(x) = c,

where c = f(x0) = 2.5

x1

0.5 1.0 1.5

x 2

0.0

0.5

1.0

f(x)

fl(x)

fq(x)
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Taylor’s Theorem, Linear and Quadratic Approximations using
Julia

1 using Symbolics, ForwardDiff, LinearAlgebra
2
3 @variables x1 x2
4 f(x) = 2x[1] + x[2]/x[1]
5 gf = (f, x) -> ForwardDiff.gradient(f,x)
6 Hf = (f, x) -> ForwardDiff.hessian(f,x)
7
8 x0 = [1, 0.5]
9 fl(x) = f(x0) + gf(f, x0)'*(x - x0)
10 fq(x) = f(x0) + gf(f, x0)'*(x - x0) + (1/2)*(x - x0)'*H(f, x0)*(x - x0)
11 println(expand(fl([x1, x2])))
12 println(expand(fq([x1, x2])))
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Taylor’s Theorem, Linear and Quadratic Approximations using
Matlab

1 syms x1 x2 real
2
3 f = 2*x1 + x2/x1
4
5 x0 = [1 ,0.5];
6 g = gradient(f, [x1, x2])
7 H = hessian(f, [x1, x2 ])
8
9 f0 = subs(f,[x1, x2], x0)
10 g0 = subs(g,[x1, x2], x0)
11 H0 = subs(H, [x1, x2], x0)
12 dx = [x1; x2] - x0';
13
14 fl = f0 + g0'*dx
15 fq = expand(f0 + g0'*dx + (0.5)*dx'*H0*dx)
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