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General Form

The General Form of Optimization Problem

minimize f(x)

subject to ¢;(x) <0, i=1,...,m

x € R™ is the optimization variable

f(x) : R™ — R is the objective or cost function

gi - R" — R,i=1,...,m, are the inequality constraint functions
h; : R" — R,i=1,...,1, are the equality constraint functions.

vvyyvyy
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Standard form: Top Brass Data

Top Brass Trophy Company makes large championship trophies for
youth athletic leagues. At the moment, they are planning pro-
duction for fall sports: US football and football. Each US football
trophy has a wood base, an engraved plaque, a large brass US football

Since the US football has an asymmetric shape, its base requires 4

board feet of wood;

the moment there are 1000 brass US footballs in stock, _

What trophies

should be produced from these supplies to _

assuming that all that are made can be sold?

US football football
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Standard form: Top Brass Data

Recipe for building each trophy

wood  plaques  US footballs soccer balls  profit

US football 4 ft 1 1 0 S 12

folEl 1 0 1 $9

Quantity of each ingredient in stock

wood plaques US football balls -balls
instock 4800 ft 1750 1000 1500
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Top Brass Problem

Example

Matrix form
ma>}imize 12f +9s
,8
subject to 4f + 2s < 4800 maximize c’x
f+s <1750 subject to Ax <b
0 < f <1000 x>0
0 < s <1500
This is in matrix form, with:
4 2 4800
1 1 1750 12
A= , b= , €= , X= !
1 0 1000 9 s
0 1 1500
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Graphical Method: Example

Define z = 12f 4 9s, where z = profit. Here s = — 127 4 2

9

Geometry of Top Brass
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Solve Top Brass Problem with MATLAB

O VN U W

% Objective function (note: linprog minimizes, so we negate the coefficients)
f_obj = [-12; -91; % Maximize becomes minimize of negative

% Inequality constraints: Axx < b

A= [4, 2;
1, 11;
b = [4800;
17501;

% Variable bounds
1b = [0; 0]; % Lower bounds for f and s
ub = [1000; 1500]; % Upper bounds for f and s

% Solve using linprog
options = optimoptions('linprog', 'Display','none'); % Suppress output
[x_opt, fvall = linprog(f_obj, A, b, [1, [1, 1b, ub, options);

% Display results

f = x_opt(1);

s = x_opt(2);

max_profit = -fval; % Negate to get the original maximized value

fprintf('Optimal f: 2f\n", f);
fprintf('Optimal s: 2f\n', s);
fprintf('Maximum profit: %.2f\n', max_profit);
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http://inc.kmutt.ac.th/~sudchai.boo/Teaching/inc491s/matlab/lecture1/top_brass.mlx

Solve Top Brass Problem with Julia

using JuMP, GLPK

m = Model(GLPK.Optimizer)
@variable(m, 0 <= f <= 1000) # US football trophies
@variable(m, 0 <= s <= 1500) # football trophies

@constraint(m, 4f + 2s <= 4800) # total board feet of wood
@constraint(m, f + s <= 1750) # total number of plagues

O VN U W

Qobjective(m, Max, 12f + 9s) # maximize profit

12 # Printing the prepared optimization model
13 print(m)

15 # Solving the optimization problem
16 JuMP.optimize!(m)

18 # Printing the optimal solutions obtained

19 println("Build ", JuMP.value(f), " US football trophies.")
20 println("Build ", JuMP.value(s), " footbal trophies.")

21 println("Total profit will be \$", JuMP.objective_value(m))

Julia code: Top Brass Problem
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A Simple Problem:

minimize f(x)
X
subject to gi(x) <0,

hi(x)=0, j=1,...,1

11111

Example:
e 2 2
minimize (1 —2)"+ (z2 — 1)
X
subject to x2 —221 =0 Feasible region
2 —22 <0 ) ‘ |
0 2 4
71 +w2 <2

&

> Unconstrained Optimal Solution: x = [2 1]

> Solution with only equality con.: x = [0.8  1.6] (The constraint must be active.)

> Solution with both types of con: x = [0.67  1.33]
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Graphical Solution of One- and Two-Variable Problems

Forn =1 orn = 2, we could plot the NLP problem to get the solution. The example
shows the plotting of the feasible region © and objective function contours for the

NLP problem with n = 2 as follow:

Optimal Point

— objective function contours

Feasible region

Julia code: Graphical Method
Matlab code: Graphical Method

minimize (1 +2)% — a2
T1,T2
2
. xry
subject to 1 +ax2—1<0

2421 — 222 <0

The real optimal solution is obtained as
z] = —1.6,

x5 = 0.36
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Chaateau Laupt-Himum

The Chateau Laupt-Humum produces rosé wine and red wine by
buying grapes from local producers.

This year they can buy up to
They
can then vinify the grapes in two ways: either as a white wine to obtain
a rosé wine or as a red wine to get _ a full-bodied red wine.
The vinification of the rosé wine costs €2 per kilo of grapes, while that of

In order to take into account economies of scale, the Chateau wants to ad-
just the price of its wine to the quantity produced. The price for one liter of
rosé is €15 minus a rebate of €2 per hundred liters produced Similarly, they sell

produced.

How should the Chateau Laupt-Himum be organized in order to maximize its profit,
when a kilo of grapes produces 1 liter of wine?

rosé wine [ red wine] Pinot Noir
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Chaateau Laupt-Himum

There are three variables:
» 7 is the number of liters of rosé wine to produce each year,
» x5 is the number of liters of Pinot Noir to produce,
» z3 is the number of kilos of grapes to buy.

The objective is to maximize the profit. We have (terms in red color are rebate.)
> Each liter of rosé wine that is sold gives (in €): 15 — 12521
» Fach liter of Pinot Noir gives (in €): 23 — %.OIQ

» The revenues corresponding to the production of z; liters or rosé wine and z2
liters of Pinot Noir are equal to z1 (15 — 12571) + @2 (23 — 15572)

> Grape is €3 per kilo, and a liter of wine need one kilo of vinified grapes, which
costs €2 for the rosé and €3.50 for the Pinot Noir: 2z1 + 3.522 + 3x3

The the objective function is

(X) = 15 x 23 (2:17 3.5 3 )
f - —x —+ - —x — + 3.572 + 3z
1 1 2 0 2 1 2 3)s

and the constraints are 1, x2,x3 > 0,and z1 + z2 < x3 |
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Chaateau Laupt-Himum

We combine the modeling steps to obtain the following optimization problem:

nzlelnélgnzlge f(x) =a1 (15 - 1%)()1’1) + zo (23 — %xg) — (2z1 + 3.522 + 3x3)
subject to z1 + w2 < 73

z3 < 1000

x1 >0

x2 >0

x3 >0

Note: The problem is higher than two-dimension space, so it cannot be solved by
using graphical method.
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Optimization problems

We consider the following optimization problem with continuous design variables,

minimize  f(x),
X
subject to  h(x) =0

g(x) <0
x € X

where x = [z1,...,xn] is composed of the design variables that the optimization
algorithm can change.

Minimum Points:

» the point x* is a weak local minimum if there exists a § > 0 such that
f(x*) < f(x) for all x such that |x — x*| < §, thatis f(x*) < f(x) forallxina
d-neighborhood of x*.

» the point x* is a strong local minimum if there exists a § > 0 such that
f(x*) < f(x) forall x such that |x — x*| < 6.

» x* is a global minimum if f(x*) < f(x) forall x 14 ] 47
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Existence of a Minimum and a Maximum: Weierstrass Theorem

closed, bounded, and continuous

Briefly details of important terms:
» dom f here means domain of the function.

> Theset {z: |z| < 1} isan example of a closed set while {z : |z| < 1} is an open
set.

» Asetis bounded if it is contained within some sphere of finite radius, i.e. for any
point a in the set, a’a < ¢, where ¢ is a finite number.

> For example, the set of all positive integers, {1, 2, ...}, is not bounded.

» Asetthatis both closed and bounded is called a compact set.

Let f(x) be a continuous function defined over a closed and bounded set Q C
dom f. Then, there exist points x* and x** in Q where f attains its minimum and
maximum, respectively. That is f(x*) and f(x**) are the minimum and maximum
values of f in the set.
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Existence of a Minimum and a Maximum: Weierstrass Theorem

Let x* and x** denote the solutions, if one exists, to the minimization, and
maximization problems

minimize f(x) maximize f(x)

subject to x € subject to x€eN

Consider a problem

minimize x subject to 0<z<1

This simple problem does not have a solution. We observe that the constraint set Q is
not closed. Re-writing the constraint as 0 < x < 1 results in z = 0 being the solution.
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Existence of a Minimum and a Maximum: Weierstrass Theorem

Consider the cantilever beam in Fig. with a tip load P and tip deflection . The
cross-section is rectangular with width and height equal to z1, o, respectively. It is
desired to minimize the tip deflection with given amount of material, or

minimize 19

Section B-B subject to A< Ap

This problem does not have a solution. It is ill-posed. This can be seen by substituting
the beam equation

5— pPL? ¢
3Bl wmyay’

where cis a known scalar. Owing to the fact that x5 is cubed in the denominator of
the § expression, with a given A = x1x» (the cross section area), the solution will tend
to increase zo and reduce z1. That is, the beam will tend to be infinitely slender with

x1 — 0, 2 — oo.
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Existence of a Minimum and a Maximum: Weierstrass Theorem

T2

Look at the feasible region Q shown that it is unbounded, violating the simple
conditions in Weierstrass theorem.
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Quadratic Forms and Positive Definite matrices

Consider a function
fxy, ) = 23 — 6z129 + 923
We can write f(z1,x2) in a matrix notation as:
f(w1,2) = [ccl xz] {_13 93] {zj
= xTAx
The matrix A is symmetric since

A+ AT
xTAx:xT< +2 )x

A+ AT

B =

is a symmetric matrix.
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Quadratic Forms and Positive Definite matrices

Positive definiteness

positive definiteness
» A symmetric matrix A € R™*™ is called positive semidefinite, denoted by
A >0, ifxTAx > 0Vx € R

» A symmetric matrix A € R™*™ is called positive definite, denoted by
A0, ifxTAx > 0Vx € R and x # 0.

Example Let

A=

-1 T 5
L ,foranyx:[gcl 1’2] eRr

2 -1
xTAx = [371 962] |: - :| [x1:| =222 — 2xy20 + 23 = 27 + (1 — 22)? > 0.
_ Zo

The matrix A is positive semidefinite. Since 22 + (z1 — x2)? = 0 if and only if
x1 = 22 = 0 it follows that A is positive definite. Note: the negative (semi)definite is
just the opposite sign of the positive (semi)definite. 21/ 47



Quadratic Forms and Positive Definite matrices

Positive definiteness

The matrix, whose components are all positive, is note positive definite since for
T
X = {1 —1} , we have

eigenvalue characterization (proof is omit.)

Let A be a symmetric n x n matrix. Then

» A is positive definite if and only if all its eigenvalues are positive,
A is positive semidefinite if and only if all its eigenvalues are nonnegative,
A is negative definite if and only if all its eigenvalues are negative,

A is negative semidefinite if and only if all its eigenvalues are nonpositive,

vV v v Vv

A is indefinite if and only if it has at least one positive eigenvalue and at

lease one negative eigenvalue.
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Quadratic Forms and Positive Definite matrices

Positive definiteness

A—1-2

=0, A=-1,3
—2x—1

A—{l ﬂ det(A\I — A) =

It is obvious that the matrix A is not positive definite.

Sylvester’s Test for a Positive definite Matrix

Let A? denote the submatrix formed by deleting the last n — i rows and columns
of A, and let det(A?) is the determinant of A%. Then, A is positive definite if and
only if det(A?) > 0 fori = 1,2,...,n. This is, the determinants of all principal
minors are positive.

> A is positive (semi-)definite if and only if all its leading principal minors
are positive, i.e., det A* > (>)0 for all 4.

> A is negative (semi-)definite if and only if all the leading principal minors
of —A are positive, i.e,, det —A* > (>)0 for all ¢

» A is indefinite if neither positive or negative definite. -




Quadratic Forms and Positive Definite matrices

Positive definiteness

Consider a matrix A below:

1 2 3
A=|2 5 -1
3 -1 2
We have
Ly 1 2 3
Al =1>0, A2:2 =5-4=1>0, A’>=|2 5 —1|=-56<0
3 -1 2

Thus, A is not positive definite.
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Quadratic Forms and Positive Definite matrices

Positive definiteness

Check the characteristic of the following matrices:

1 -2 4 4 =2 0
A=1-2 2 01, B=|-2 0
4 0 -7 0 0 50

A is indefinite,and B is positive definite.
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C™ Continuity of a Function

Continuity

The function f is C° continuous at a point a if : given any sequence {xzx} in
dom(f) which converts to a, then f(xx) must converge to f(a). Further, f is
continuous over a set S implies that it is continuous at each pintin S.

C' and €2 Continuity

Let A be an open set of R™® and f : R™ — R, if each of the functions

gjﬁv ,i=1,...,n,is continuous on this set then we write f € C' or that f is C!
continuous or state that f is “smooth”. If each of the functions 1<4,7<mn,
is continuous on the set, then we write f € C2.

Example: Consider the function f with dom f € R! :

of
dz;,0x;’

0, <0
flx) =
1, >0

The sequence z, = 1/k, k = 1,2, 3,... converges (from the right) to a = 0 but the
sequence f(xg) =1 forall k and does not converge to f(a) = f(0) = 0. Thus, f is
discontinuous at a = 0. 26/ 47



C™ Continuity of a Function

Consider
1 2 1
f(x):imax((),x—f)) , r€R
4q|.. o
ox
fl)
3]
0
o1 = max(0,z — 5) =
ox =24
02 f 0 ,forz<5s N
Ox? 1 ,forz>5 N
2 3 4 5 6 7 8

The first derivative is a continuous function, while the second derivative is not
continuous at x = 5. Thus f is only C! (and not C?) continuous on R, (a = 5 and

f"(a) =5 but () = 1)

See ch1/positive_defjl, df /dx = %(2) max (0, z — 5)d(max(0,z — 5))/dx = max(0,z — 5) 27147



Derivatives and Gradient

We consider diﬂferentiableTand continuous functions of n variables
X = [wl T - xn] denoted by f(x) or f(z1,z2,...,z3).

» The derivative with respect to the ith parameter is given by:

of lim flxi,z2,. @ + Ay, ooy xn) — f(x1, 22,000, 24,00, Tn)
Ox; Az;—0 Ax;
@z, Arg,xn) — f(T, 2,0, T, T0)

ACE,L'

» Gradient Vector: Given a function f(x) € C', we introduce the gradient vector
V f, a column vector, as

T
_|of of of
fo [8m1’3m27"" 3.’10,,,]

The gradient evaluated at a point ¢ is denoted by V f(c).
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Derivatives and Gradient

Example Consider the function:
f(x) = (z1 — 2)2 + (x2 — 1)2 — T1T2

T
Determine the gradient of the function at the point xo = [1.0 1.0]
Solution:

o[-l

At the point xq

29 [ 47



Jacobian

Sometime we need to consider a number of functions at the same time, like the
response of a circuit at a number of frequencies. In this case we have

T
f=[f fo - fu
The Jacobian matrix is the matrix combining all these gradients together and is given
by
of of of
T
N4 o5 om 7 owe
=] | =
T Ofm Ofm Ofm
me Oxq Oxq e Oxn
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T
Consider the vector of functions f(x) = [3:0% +a3 2% - 2353] . Determine the

T
Jacobian at the point xg = [2.0 1.0 1.0]

I = [VflT] _ {fm 3232 0]

4 322 0 -2

At the point xq, the Jacobian is given by:

vl |12 30
J(x(])_[VfQT]_L2 0 —2}

31/ 47



Second-order derivatives, Hessian Matrix

The mixed second-order derivativewith respect to the ith and jth parameters is given
by:
Af(z1,22,. @ j+Azj,...xn  Of(x1,®2, Ty T)

= lim
O0x;0x;  Azj—0 Az

The gradient of a vector of m-function, H = Vg is defined to be a matrix of dimension

(n x m) as
. . . % f 8% *f
e} 15} .

991 % ce. (’?ng 8;% 6:v128x2 8w126wn
991 992 .. 99m x o f LJ; o aidf
dxo Do L) Oz20x1 oz Oxzo0xy

H=Vg= = 2 !
991 992 ... 9gm o2 f 2% f o%f
Own Oy Ozn Oxp0x Oz O0xo T ox2

The Hessian matrix is a symmetric matrix because the order of differentiation does
not make a difference.
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Second-order derivatives, Hessian Matrix

Evaluate the gradient and the Hessian of the function

flx) = Bx% + 2x129 + T123 + 2.51% + 2x013 + 213 — 8x1 — 3x2 — 3z at the point
T

X0 = [1.0 —1.0 1.0]

6x1 + 222 + w3 — 8 -3
Vf(x) =g(x) = |2z1 + 5z + 2x3 — 3 =  Vf(xo)= |4
x1 + 2z + 43 — 3 0
6 2 1
O T
m= 20y 5
ox
1 2 4
Note:
3 1 05| [a1 o
F@=[m w2 ws] |1 25 1| |w|+[-8 -3 -3]|m
05 1 2] |3 o3

1
= XTQX +bTx = §XTHX +bTx

33 /47



Gradient and Hessian with Matlab

syms x1 x2 x3

f o= 3%x1™2 + 2xx1#x2 + X1#Xx3 + 2.5%x2"2 + 2#x2%x3 ...
+ 2%xX3"2 - 8xx1 - 3%x2 - 3%x3

g = gradient(f,[x1, x2, x31)
h = hessian(f,[x1, x2, x3])
gl = subs(g, [x1, x2, x31, [1, -1, 1])

® N oUW N o

6x1+2x2 + 23 — 8 6 1
ans = 2x1+b5x0+2x3 —3 ans = 2 2
r1+2x2 +4x3 —3 1 4
-3
ans = —4
0
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Gradient and Hessian with Julia

1 using Symbolics, ForwardDiff

2

3  @variables x1 x2 x3

4

5  f(x) = 3x[11"2 + 2x[1]x[2] + x[1]1x[3] + 2.5x[2]"2 + 2x[2]x[3] +
6 2x[3]%2 - 8x[1] - 3x[2] - 3x[3]

7

8 gf(x) = ForwardDiff.gradient(f,x)

9 Hf(x) = ForwardDiff.hessian(f,x)

10

1n g = gf([x1, x2, x3])
12 h = HFf([x1, x2, x31)
13 gl = gf([1, -1, 1]1)
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Directional Derivative

Directional Derivative: The rate of change in a direction p is quantified by a
directional derivative, defined as

Vpf(x) = lim

im M =VfTp = |V ]l[pl cos b

2.0
o 154
Vi
1.0+
0.5 : : .
-20 -15  -10  —05 0.0

Ty
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Directional Derivative

Consider the following function of two variables: f(z1,z2) = 2 + 222 — z122. The
gradient can be obtained using symbolic differentiation, yielding

dxo — ;1

Vf(z1,x2) = [2‘“ _22} . Vi(=L1) = [_ﬂ :

Taking the derivative in the normalized direction p = [% —%] we obtain

1.5

1.0

T 2/V/5 o & 054
Vi'p= {—3 o] |:_1/\/5:| = 7

0.04

—1.5 —-1.0 —0.5 0.0 0.5
kA
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Directional Derivative

We wish to compute the directional derivative of f(x) = z12z2 at z = [1, 0] in the
directionp = [-1, —1]:

Vikx) = {xz xl]T, Vo f(x) = Vfx)Tp= [0 1] [_1} -1

We can also compute the directional derivative as follows:
» Introduce a scalar variable @ and denote points along the vector p emanating
fromx as g(a) =x+ ap
> Denote the function f(a) = f(g(a)) = f(x+ ap). We have

%9 _ <Q>Tp = Vi p

a=0 % ox

d
VoS = 2

_ o

a=0 dg

» from above example, we have
gla) = f(x+ap) = (z1 + ap1)(z2 + ap2) = (1 —a)(—a) =a® —«
g'(@)=2a~1, ¢'(0)=-1
38/ 47



Curvature and Hessian

The rate of change of the gradient-the curvature-is also useful information because it
tells us if a function’s slope is increasing (positive curvature), decreasing (negative
curvature), or stationary (zero curvature). Given a function f(z1,...,xs) € C2, we
define the matrix of second partial derivatives

f % f -
Bz% Ox10xo Ox10Ty,
% f %f . %f
Oxodxy ox2 Oxo0Ty,
Hy(x) = V2f = 2
Oxp 0z Oxq10xo B:c%

The Hessian is a symmetric matrix with n(n + 1)/2 independent elements.
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Curvature and Hessian

We can find the rate of change of the gradient in an arbitrary normalized direction p
by taking the product Hp,.

H, = V,(Vf(x)) = lim Y&+ = V/()

T—0 T

To find the curvature of the one-dimensional function along a direction p, we need to
project Hy, onto direction p as

Vp(Vpf(x)) = (H'p)"p = p"Hp

which yields a scalar quantity. If we want to get the curvature in the original units of x,
p should be normalized.
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Curvature and Hessian

Consider f(z1,z2) = 22 + 222 — m122. The Hessian of this quadratic is

_ N 2w —xg| ) _ |2 1
H_V(Vf(f))—v<[4x2—x1:|> B [_1 4:|

T
To find the curvature in the direction p = [—1/2 —\/§/2] , we compute

2 —1| | -1 T3
pTHp =[5 ] {_1 4]{\%}: 2

2

w

e



Taylor's Theorem, Linear and Quadratic Approximations

Suppose that f(z) € CP on an interval J = [a, b]. If 2o, x belong to J, then there exists
a number v between zg and x such that

J' (o) J" (o)

f@) = flzo) + === (& —wo) + (z — 20)?
+- 4+ 7]0@71)(%) (x — :1:0)@71> + 7f(1’>(x0) (x —z0)?
(p—1)! p!

» Linear approximation: fi(z) ~ f(xo) + f'(z0)(z — z0)
» Quadratic approximation: f,(z) ~ f(zo) + f'(z0)(z — z0) + %f”(.’xo)(w —x0)?

For n-dimension we have

Falx) = F(x0) + V7 (x0)" (x = x0) + 3 (x — x0) "H(x0)(x ~ x0) + HOT.
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Taylor's Theorem, Linear and Quadratic Approximations

Given f(x) = 2z1 + ;—i Construct linear and quadratic approximations to the original
function f(x) at xg = [1 0.5]T

The linear approximation is

fix) ~ f(x0) + V(x0)"(x — x0) = 2.5+ [15 1] T L?_JJ

=054+ 1521 + a2
The quadratic approximation is

Falx) = F(x0) + V£ (x0)" (= x0) + 3 (x — x0)"H(x0) (x — x0)

43 [ 47



Taylor's Theorem, Linear and Quadratic Approximations

fq(x) = 0.5+ 1521 + 20 + % [(xl “1) (2 70.5)] {—11 —01] { z1—1 }

1
=05+x1 +2x2 — 122 + 5:p%

Plotting: We need to plot, in
variable-space or z-space, the contours

F&) =c¢ filx) =c fy(x) =c,
where ¢ = f(x0) = 2.5




Taylor's Theorem, Linear and Quadratic Approximations using

Julia

O N U W N o

using Symbolics, ForwardDiff, LinearAlgebra

@variables x1 x2

f(x) = 2x[1] + x[2]/x[1]

gf = (f, x) -> ForwardDiff.gradient(f,x)
Hf = (f, x) -> ForwardDiff.hessian(f,x)

x0 = [1, 0.5]

fl(x) = f(x0) + gf(f, x0)'«(x - x0)

fq(x) = f(x0) + gf(f, x0)'*(x - x0) + (1/2)*(x - x0)'*H(f, x0)*(x - x0)
println(expand(fl1([x1, x2])))

println(expand(fq([x1, x2]1)))
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Taylor's Theorem, Linear and Quadratic Approximations using

Matlab

1 syms x1 x2 real

2

3 f = 2%x1 + x2/x1

4

5 x0 = [1,0.5];

6 g = gradient(f, [x1, x21)
7 H = hessian(f, [x1, x2 1)
8

9 f0 = subs(f,[x1, x2], x0)
10 g0 = subs(g,[x1, x2], x0)
1 HO = subs(H, [x1, x2], x0)
12 dx = [x1; x2] - x0';

13

14 fl = fo + g0'=*dx

15 fq = expand(fo + g0'xdx + (0.5)*dx'*HO*dx)
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