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General Form

The General Form of Optimization Problem

minimize f(x)

subject to gi(x) ≤ 0, i = 1, . . . ,m

hj(x) = 0, j = 1, . . . , l

xL ≤ x ≤ xU

• x ∈ Rn is the optimization variable
• f(x) : Rn 7→ R is the objective or cost function
• gi : Rn 7→ R, i = 1, . . . ,m, are the inequality constraint functions
• hi : Rn 7→ R, i = 1, . . . , l, are the equality constraint functions.
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General Form

A Simple Problem:

minimize
x

f(x)

subject to gi(x) ≤ 0, i = 1, . . . ,m

hj(x) = 0, j = 1, . . . , l

Example:

minimize
x

(x1 − 2)2 + (x2 − 1)2

subject to x2 − 2x1 = 0

x2
1 − x2 ≤ 0

x1 + x2 ≤ 2
x1

0 2 4

x 2

−1

0

1

2

3

Unconstraint

Only EC

EC and IC

 Objective function contours

Feasible region

• Unconstrained Optimal Solution: x =
[
2 1

]
• Solution with only equality con.: x =

[
0.8 1.6

]
• Solution with both types of con.: x =

[
0.67 1.33
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Graphical Solution of One- and Two-Variable Problems

For n = 1 or n = 2, we could plot the NLP problem to get the solution. The example
shows the plotting of the feasible region Ω and objective function contours for the
NLP problem with n = 2 as follow:

x1

−3 −2 −1 0 1

x 2

−2

0

2

Optimal Point

objective function contours

Feasible region

minimize
x1,x2

(x1 + 2)2 − x2

subject to
x2
1

4
+ x2 − 1 ≤ 0

2 + x1 − 2x2 ≤ 0

Real optimal solution is

x∗
1 = −1.6, x∗

2 = 0.36

Julia code: Graphical Method
Matlab code: Graphical Method
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http://inc.kmutt.ac.th/~sudchai.boo/Teaching/inc491s/julia/lecture2/Graphical_Solution.jl.html
http://inc.kmutt.ac.th/~sudchai.boo/Teaching/inc491s/matlab/lecture2/graphical_method.m


Existence of a Minimum and a Maximum: Weierstrass Theorem

Briefly details of important terms:

• dom f here means domain of the function.

• The set {x : |x| ≤ 1} is an example of a closed set while {x : |x| < 1} is an open
set.

• A set is bounded if it is contained within some sphere of finite radius, i.e. for any
point a in the set, aT a < c, where c is a finite number.

• For example, the set of all positive integers, {1, 2, . . .}, is not bounded.

• A set that is both closed and bounded is called a compact set.

Theorem
Let f(x) be a continuous function defined over a closed and bounded set Ω ⊂ dom f .
Then, there exist points x∗ and x∗∗ in Ω where f attains its minimum and maximum,
respectively. That is f(x∗) and f(x∗∗) are the minimum and maximum values of f in
the set.
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Existence of a Minimum and a Maximum: Weierstrass Theorem

Let x∗ and x∗∗ denote the solutions, if one exists, to the minimization, and
maximization problems

minimize f(x)

subject to x ∈ Ω

maximize f(x)

subject to x ∈ Ω

Consider a problem

minimize x subject to 0 < x ≤ 1

This simple problem does not have a solution. We observe that the constraint set Ω is
not closed. Re-writing the constraint as 0 ≤ x ≤ 1 results in x = 0 being the solution.
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Existence of a Minimum and a Maximum: Weierstrass Theorem

Consider the cantilever beam in Fig. with a tip load P and tip deflection δ. The
cross-section is rectangular with width and height equal to x1, x2 , respectively. It is
desired to minimize the tip deflection with given amount of material, or

minimize δ

subject to A ≤ A0

This problem does not have a solution. It is ill-posed. This can be seen by substituting
the beam equation

δ =
PL2

3EI
=

c

x1x3
2

,

where c is a known scalar. Owing to the fact that x2 is cubed in the denominator of
the δ expression, with a given A = x1x2 (the cross section area), the solution will tend
to increase x2 and reduce x1 . That is, the beam will tend to be infinitely slender with
x1 7→ 0, x2 7→ ∞.
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Existence of a Minimum and a Maximum: Weierstrass Theorem

Ω

x1

x2

Look at the feasible region Ω shown that it is unbounded, violating the simple
conditions in Weierstrass theorem.
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Quadratic Forms and Positive Definite matrices

Consider a function

f(x1, x2) = x2
1 − 6x1x2 + 9x2

2

We can write f(x1, x2) in a matrix notation as:

f(x1, x2) =
[
x1 x2

] [ 1 −3

−3 9

][
x1

x2

]
= xTAx

The matrix A is symmetric since

xTAx = xT

(
A+AT

2

)
x

B =
A+AT

2
is a symmetric matrix.
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Quadratic Forms and Positive Definite matrices

Definition (positive definiteness)

• A symmetric matrix A ∈ Rn×n is called positive semidefinite, denoted by
A � 0, if xTAx ≥ 0 ∀x ∈ Rn .

• A symmetric matrix A ∈ Rn×n is called positive definite, denoted by A � 0, if
xTAx > 0 ∀x ∈ Rn and x 6= 0.

Example Let

A =

[
2 −1

−1 1

]
, for any x =

[
x1 x2

]T
∈ R2

xTAx =
[
x1 x2

] [ 2 −1

−1 1

][
x1

x2

]
= 2x2

1 − 2x1x2 + x2
2 = x2

1 + (x1 − x2)
2 ≥ 0.

The matrix A is positive semidefinite. Since x2
1 + (x1 − x2)2 = 0 if and only if

x1 = x2 = 0 it follows that A is positive definite. Note: the negative (semi)definite is
just the opposite sign of the positive (semi)definite.
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Quadratic Forms and Positive Definite matrices

The matrix, whose components are all positive, is note positive definite since for
x =

[
1 −1

]T
, we have

A =

[
1 2

2 1

]
, xTAx =

[
1 −1

] [1 2

2 1

][
1

−1

]
= −2

Definition (eigenvalue characterization (proof is omit.))
Let A be a symmetric n× n matrix. Then

• A is positive definite if and only if all its eigenvalues are positive,

• A is positive semidefinite if and only if all its eigenvalues are nonnegative,

• A is negative definite if and only if all its eigenvalues are negative,

• A is negative semidefinite if and only if all its eigenvalues are nonpositive,

• A is indefinite if and only if it has at least one positive eigenvalue and at lease
one negative eigenvalue.
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Quadratic Forms and Positive Definite matrices

A =

[
1 2

2 1

]
, det(λI−A) =

∣∣∣∣∣λ− 1− 2

−2λ− 1

∣∣∣∣∣ = 0, λ = −1, 3

It is obvious that the matrix A is not positive definite.

Definition (Sylvester’s Test for a Positive definite Matrix)

LetAi denote the submatrix formed by deleting the last n− i rows and columns ofA,
and let det(Ai) is the determinant of Ai . Then, A is positive definite if and only if
det(Ai) > 0 for i = 1, 2, . . . , n. This is, the determinants of all principal minors are
positive.

• A is positive (semi-)definite if and only if all its leading principal minors are
positive, i.e. , detAi > (≥)0 for all i.

• A is negative (semi-)definite if and only if all the leading principal minors of
−A are positive, i.e., det−Ai > (≥)0 for all i

• A is indefinite if neither positive or negative definite. 12/36



Quadratic Forms and Positive Definite matrices

Consider a matrix A below:

A =

1 2 3

2 5 −1

3 −1 2


We have

A1 = 1 > 0, A2 =

∣∣∣∣∣1 2

2 5

∣∣∣∣∣ = 5− 4 = 1 > 0, A3 =

∣∣∣∣∣∣∣
1 2 3

2 5 −1

3 −1 2

∣∣∣∣∣∣∣ = −56 < 0

Thus , A is not positive definite.
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Quadratic Forms and Positive Definite matrices

Check the characteristic of the following matrices:

A =

 1 −2 4

−2 2 0

4 0 −7

 , B =

 4 −2 0

−2 3 0

0 0 50


A is indefinite,andB is positive definite.
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Cn Continuity of a Function

The function f is C0 continuous at a point a if : given any sequence {xk} in dom(f)

which converts to a, then f(xk) must converge to f(a). Further, f is continuous over a
set S implies that it is continuous at each pint in S.

C1 and C2 Continuity
Let A be an open set of Rn and f : Rn 7→ R1 . if each of the functions
∂f
∂xi

, i = 1, . . . , n, is continuous on this set then we write f ∈ C1 or that f is C1

continuous or state that f is “smooth”. If each of the functions ∂f
∂xi,∂xj

, 1 ≤ i, j ≤ n,
is continuous on the set, then we write f ∈ C2 . Example: Consider the function f with

dom f ∈ R1 :

f(x) =

0, x ≤ 0

1, x > 0

The sequence xk = 1/k, k = 1, 2, 3, . . . converges (from the right) to a = 0 but the
sequence f(xk) = 1 for all k and does not converge to f(a) = f(0) = 0. Thus, f is
discontinuous at a = 0. 15/36



Cn Continuity of a Function

Consider

f(x) =
1

2
max(0, x− 5)2, x ∈ R1

∂f

∂x
= max(0, x− 5)

∂2f

∂x2
=

0 , for x ≤ 5

1 , for x > 5

x
2 3 4 5 6 7 8

f
(x
)

0

1

2

3

4 @f

@x

f(x)

The first derivative is a continuous function, while the second derivative is not
continuous at x = 5. Thus f is only C1 (and not C2) continuous on R1 .

See ch1/positive_def.jl, df/dx = 1
2
(2)max(0, x − 5)d(max(0, x − 5))/dx = max(0, x − 5)
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Derivatives and Gradient

We consider differentiable and continuous functions of n variables
x =

[
x1 x2 · · · xn

]T
denoted by f(x) or f(x1, x2, . . . , x3).

• The derivative with respect to the ith parameter is given by:

∂f

∂xi
= lim

∆xi→0

f(x1, x2, . . . , xi +∆xi, . . . , xn)− f(x1, x2, . . . , xi, . . . , xn)

∆xi

≈
f(x1, x2, . . . , xi +∆xi, . . . , xn)− f(x1, x2, . . . , xi, . . . , xn)

∆xi

• Gradient Vector: Given a function f(x) ∈ C1 , we introduce the gradient vector
∇f , a column vector , as

∇f =
[

∂f
∂x1

, ∂f
∂x2

, . . . , ∂f
∂xn

]T
The gradient evaluated at a point c is denoted by ∇f(c).
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Derivatives and Gradient

Example Consider the function:

f(x) = (x1 − 2)2 + (x2 − 1)2 − x1x2

Determine the gradient of the function at the point x0 =
[
1.0 1.0

]T
Solution:

∇f =

[
∂f
∂x1
∂f
∂x2

]
=

[
2(x1 − 2)− x2

2(x2 − 1)− x1

]

At the point x0

∇f =

[
−3

−1

]
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Jacobian

Sometime we need to consider a number of functions at the same time, like the
response of a circuit at a number of frequencies. In this case we have

f(x) =
[
f1 f2 · · · fm

]T
The Jacobian matrix is the matrix combining all these gradients together and is given
by

J(x) =


∇fT

1

∇fT
2

...
∇fT

m

 =


∂f1
∂x1

∂f1
∂x2

· · · ∂f1
∂xn

∂f2
∂x1

∂f2
∂x1

· · · ∂f2
∂xn

...
...

. . .
...

∂fm
∂x1

∂fm
∂x1

· · · ∂fm
∂xn


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Jacobian

Consider the vector of functions f(x) =
[
3x2

1 + x3
2 x3

1 − 2x3

]T
. Determine the

Jacobian at the point x0 =
[
2.0 1.0 1.0

]T

J(x) =

[
∇fT

1

∇fT
2

]
=

[
6x1 3x2

2 0

3x2
1 0 −2

]

At the point x0 , the Jacobian is given by:

J(x0) =

[
∇fT

1

∇fT
2

]
=

[
12 3 0

12 0 −2

]
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Second-order derivatives, Hessian Matrix

The mixed second-order derivativewith respect to the ith and jth parameters is given
by:

∂2f

∂xi∂xj
= lim

∆xj→0

∂f(x1,x2,...,xj+∆xj ,...,xn

∂xi
− ∂f(x1,x2,...,xi,...,xn)

∂xi

∆xj

The gradient of a vector ofm-function,H = ∇g is defined to be a matrix of
dimension (n×m) as

H = ∇g =


∂g1
∂x1

∂g2
∂x1

· · · ∂gm
∂x1

∂g1
∂x2

∂g2
∂x2

· · · ∂gm
∂x2

...
...

. . .
...

∂g1
∂xn

∂g2
∂xn

· · · ∂gm
∂xn

 =



∂2f

∂x2
1

∂2f
∂x1∂x2

· · · ∂2f
∂x1∂xn

∂2f
∂x2∂x1

∂2f

∂x2
2

· · · ∂2f
∂x2∂xn

...
...

. . .
...

∂2f
∂xn∂x1

∂2f
∂xn∂x2

· · · ∂2f
∂x2

n


The Hessian matrix is a symmetric matrix because the order of differentiation does
not make a difference.

21/36



Second-order derivatives, Hessian Matrix

Evaluate the gradient and the Hessian of the function
f(x) = 3x2

1 + 2x1x2 + x1x3 + 2.5x2
2 + 2x2x3 + 2x2

3 − 8x1 − 3x2 − 3x3 at the point

x0 =
[
1.0 −1.0 1.0

]T

∇f(x) = g(x) =

 6x1 + 2x2 + x3 − 8

2x1 + 5x2 + 2x3 − 3

x1 + 2x2 + 4x3 − 3

 ⇒ ∇f(x0) =

−3

−4

0



H =
∂g(x)T

∂x
=

6 2 1

2 5 2

1 2 4


Note:

f(x) =
[
x1 x2 x3

] 3 1 0.5

1 2.5 1

0.5 1 2


x1

x2

x3

+
[
−8 −3 −3

]x1

x2

x3


= xTQx+ bTx =

1

2
xTHx+ bTx
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Gradient and Hessian with Matlab

syms x1 x2 x3

f = 3*x1^2 + 2*x1*x2 + x1*x3 + 2.5*x2^2 + 2*x2*x3 ...
+ 2*x3^2 - 8*x1 - 3*x2 - 3*x3

g = gradient(f,[x1, x2, x3])
h = hessian(f,[x1, x2, x3])
g1 = subs(g, [x1, x2, x3], [1, -1, 1])

ans =

 6x1 + 2x2 + x3 − 8

2x1 + 5x2 + 2x3 − 3

x1 + 2x2 + 4x3 − 3

 ans =

 6 2 1

2 5 2

1 2 4



ans =

 −3

−4

0


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Gradient and Hessian with Julia

using Symbolics, ForwardDiff

@variables x1 x2 x3

f(x) = 3x[1]^2 + 2x[1]x[2] + x[1]x[3] + 2.5x[2]^2 + 2x[2]x[3] +
2x[3]^2 - 8x[1] - 3x[2] - 3x[3]

gf(x) = ForwardDiff.gradient(f,x)
Hf(x) = ForwardDiff.hessian(f,x)

g = gf([x1, x2, x3])
h = Hf([x1, x2, x3])
g1 = gf([1, -1, 1])
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Directional Derivative

Directional Derivative: The rate of change in a direction p is quantified by a
directional derivative, defined as

∇pf(x) = lim
τ→0

f(x+ τp)− f(x)

τ
= ∇fTp = ‖∇f‖‖p‖ cos θ

x1

-2.0 -1.5 -1.0 -0.5 0.0

x 2

0.5

1.0

1.5

2.0

∇f

x

p

∇f Tp

See ch3 Unconstraint/directional_derivative_p84.jl
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Directional Derivative

Consider the following function of two variables: f(x1, x2) = x2
1 + 2x2

2 − x1x2 . The
gradient can be obtained using symbolic differentiation, yielding

∇f(x1, x2) =

[
2x1 − x2

4x2 − x1

]
, ∇f(−1, 1) =

[
−3

5

]
.

Taking the derivative in the normalized direction p =
[

2√
5

− 1√
5

]
, we obtain

∇fTp =
[
−3 5

] [ 2/
√
5

−1/
√
5

]
= −

11
√
5

x1

-1.5 -1.0 -0.5 0.0 0.5

x 2

-0.5

0.0

0.5

1.0

1.5
∇f

x

x + 𝛼p
p
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Directional Derivative

We wish to compute the directional derivative of f(x) = x1x2 at x = [1, 0] in the
direction p = [−1, −1]:

∇f(x) =
[
x2 x1

]T
, ∇pf(x) = ∇f(x)Tp =

[
0 1

] [−1

−1

]
= −1

We can also compute the directional derivative as follows:

• Introduce a scalar variable α and denote points along the vector p emanating
from x as g(α) = x+ αp

• Denote the function f(α) = f(g(α)) = f(x+ αp). We have

∇pf(x) =
df

dα

∣∣∣∣
α=0

=
∂f

∂g

∣∣∣∣
α=0

∂g

∂α
=

(
∂f

∂x

)T

p = ∇f(x)Tp

• from above example, we have

g(α) = f(x+ αp) = (1− α)(−α) = α2 − α

g′(α) = 2α− 1, g′(0) = −1
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Curvature and Hessian

The rate of change of the gradient–the curvature–is also useful information because it
tells us if a function’s slope is increasing (positive curvature), decreasing (negative
curvature), or stationary (zero curvature). Given a function f(x1, . . . , xn) ∈ C2 , we
define the matrix of second partial derivatives

Hf (x) = ∇2f =



∂2f

∂x2
1

∂2f
∂x1∂x2

· · · ∂2f
∂x1∂xn

∂2f
∂x2∂x1

∂2f

∂x2
2

· · · ∂2f
∂x2∂xn

...
...

. . .
...

∂2f
∂xn∂x1

∂2f
∂x1∂x2

· · · ∂2f
∂x2

n


The Hessian is a symmetric matrix with n(n+ 1)/2 independent elements.
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Curvature and Hessian

We can find the rate of change of the gradient in an arbitrary normalized direction p

by taking the productHp .

Hp = ∇p(∇f(x)) = lim
τ→0

∇f(x+ τp)−∇f(x)

τ

To find the curvature of the one-dimensional function along a direction p, we need to
projectHp onto direction p as

∇p(∇pf(x)) = pTHp

which yields a scalar quantity. If we want to get the curvature in the original units of x,
p should be normalized.
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Curvature and Hessian

Consider f(x1, x2) = x2
1 + 2x2

2 − x1x2 . The Hessian of this quadratic is

H = ∇(∇f(x)) = ∇
([

2x1 − x2

4x2 − x1

])
=

[
2 −1

−1 4

]

To find the curvature in the direction p =
[
−1/2 −

√
3/2
]T
, we compute

pTHp =
[
− 1

2
−

√
3

2

] [ 2 −1

−1 4

][
− 1

2

−
√
3
2

]
=

7−
√
3

2
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Taylor’s Theorem, Linear and Quadratic Approximations

Suppose that f(x) ∈ Cp on an interval J = [a, b]. If x0, x belong to J, then there
exists a number γ between x0 and x such that

f(x) ≈ f(x0) +
f ′(x0)

1!
(x− x0) +

f ′′(x0)

2!
(x− x0)

2

+ · · ·+
f (p−1)(x0)

(p− 1)!
(x− x0)

(p−1) +
f (p)(x0)

p!
(x− x0)

p

• Linear approximation: fl(x) ≈ f(x0) + f ′(x0)(x− x0)

• Quadratic approximation: fq(x) ≈ f(x0) + f ′(x0)(x− x0) +
1
2
f ′′(x0)(x− x0)2

For n-dimension we have

fq(x) ≈ f(x0) +∇f(x0)
T (x− x0) +

1

2
(x− x0)

TH(x0)(x− x0) + H.O.T.
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Taylor’s Theorem, Linear and Quadratic Approximations

Given f(x) = 2x1 + x2
x1
. Construct linear and quadratic approximations to the original

function f(x) at x0 = [1 0.5]T

∇f(x) =

2− x2

x2
1

1
x1

 , H(x) =


x2

x3
1

− 1
x2
1

− 1
x2
1

0


The linear approximation is

fl(x) ≈ f(x0) +∇f(x0)
T (x− x0) = 2.5 +

[
1.5 1

]T [ x1 − 1

x2 − 0.5

]
= 0.5 + 1.5x1 + x2

The quadratic approximation is

fq(x) ≈ f(x0) +∇f(x0)
T (x− x0) +

1

2
(x− x0)

TH(x0)(x− x0)
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Taylor’s Theorem, Linear and Quadratic Approximations

fq(x) ≈ 0.5 + 1.5x1 + x2 +
1

2

[
(x1 − 1) (x2 − 0.5)

] [ 1 −1

−1 0

][
x1 − 1

x2 − 0.5

]

= 0.5 + x1 + 2x2 − x1x2 +
1

2
x2
1

Plotting: We need to plot, in
variable-space or x-space, the contours

f(x) = c, fl(x) = c, fq(x) = c,

where c = f(x0) = 2.5

x1

0.5 1.0 1.5

x 2

0.0

0.5

1.0

f(x)

fl(x)

fq(x)
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Taylor’s Theorem, Linear and Quadratic Approximations using
Julia

using Symbolics, ForwardDiff, LinearAlgebra

@variables x1 x2
f(x) = 2x[1] + x[2]/x[1]
g(x) = ForwardDiff.gradient(f,x)
H(x) = ForwardDiff.hessian(f,x)

x0 = [1, 0.5]
fl(x) = f(x0) + g(x0)'*(x - x0)
fq(x) = f(x0) + g(x0)'*(x - x0) + (1/2)*(x - x0)'*H(x0)*(x - x0)
println(expand(fl([x1, x2])))
println(expand(fq([x1, x2])))
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Taylor’s Theorem, Linear and Quadratic Approximations using
Matlab

syms x1 x2 real

f = 2*x1 + x2/x1

x0 = [1 ,0.5];
g = gradient(f, [x1, x2])
H = hessian(f, [x1, x2 ])

f0 = subs(f,[x1, x2], x0)
g0 = subs(g,[x1, x2], x0)
H0 = subs(H, [x1, x2], x0)
dx = [x1; x2] - x0';

fl = f0 + g0'*dx
fq = expand(f0 + g0'*dx + (0.5)*dx'*H0*dx)
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