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Definition: Numerical (Mathematical) Optimization

• Optimization (in everyday language): Improvement of a good solution by
intuitive, brute-force or heuristics-based decision-making.

• Numerical (Mathematical) Optimization: Finding the best possible solution
using a mathematical problem formulation and a rigorous/ heuristic numerical
solution method.

• Mathematical programming is used as an alternative to numerical optimization.
The term programming referred to the solution of planning problems.
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Formulation of Optimization Problems

The general formulation of an optimization problem consists of:

• the variables (also called decision variables, degrees of freedom, parameters, ...)

• An objective function

• A mathematical model for the description of the system to be optimized

• Additional restrictions on the optimal solution, including bounds of the
variables.

The mathematical model of the system under consideration and the additional
restrictions are also referred to as constraints.
The objective function can either be minimized or maximized.
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Formulation of Optimization Problems

• The objective function describes an economical measure (operating costs,
investment costs, profit, etc.) or technological, or ...

• The mathematical modeling of the system results in models to be added to the
optimization problem as equality constraints.

• The additional constraints (mostly linear inequalities)( result, for instance,

from:)

• plant- or equipment-specific limitations (capacity, pressure, etc.)
• material limitations (explosion limit, boiling point, corrosivity, etc.)
• product requirements (quality, etc.)
• resources (availability, quality, etc.)
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Solution of Optimization Problems

What defines the solution of an optimization problem?

• Those values of the influencing variables (decision variables or degrees of
freedom) are sought, which maximize of minimize the objective function.

• The values of the degrees of freedom must satisfy the mathematical model and
all additional constraints like, for instance, physical or resource limitations at
the optimum.

• The solution is, typically, a compromise between opposing effects. In process
design, for instance, the investment costs can be reduced while increasing the
operating costs (and vice versa).
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Applications of Optimization

• Adjusts its speed over time

• Jobs must be scheduled. Each job
has: arrival time, deadline, total
work required.

• Budget

• Business decisions (determination of product portfolio, choice of location of
production sites, analysis fo completing investments, etc.)

• Design decisions: Process, plant and equipment (structure of a process or
energy conversion plant, favorable operating point, selection and dimensions of
major equipment, modes of process operation, etc.)
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Applications

• Autonomous Precision Landing of
Space Rockets of F9R
return-to-launch-site mission.

• The high speed on board Convex
Optimization.

• Operational decisions(adjustment of the operating point to changing
environmental conditions, production planning, control for disturbance
mitigation and set-point tracking, etc.)

• Model Identification (parameter estimation, design of experiments, model
structure discrimination, etc.)
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Example: Optimal Motion Planning of Robots

Task:

• Transportation and accurate positioning of a
part, e.g., during the assembly of an
automobile windscreen.

Aims:

• Short cycle time for production, e.g.,
minimization of transportation time through
optimal motion planning

• Correct positioning of the part during
assembly

• no collisions during movement
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Example: Wind Turbines Problem

https:

//commons.wikimedia.org/wiki/File:

Wind_farm_near_North_Sea_coast.jpg

Task:

• Wind turbines are built in groups (=wind
farms) to produce more electricity in a given
limited area

• Wind farm layout: Where to position turbines
within farm limits? How many turbines?

• Maximize annual electricity production.
Minimize levelized cost of electricity

Solution:

• Fixed cells, Continuous positions, Patterns
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Conventional vs Design optimization process [1]
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General Form

The General Form of Optimization Problem

minimize f(x)

subject to gi(x) ≤ 0, i = 1, . . . ,m

hj(x) = 0, j = 1, . . . , l

xL ≤ x ≤ xU

• x ∈ Rn is the optimization variable
• f(x) : Rn 7→ R is the objective or cost function
• gi : Rn 7→ R, i = 1, . . . ,m, are the inequality constraint functions
• hi : Rn 7→ R, i = 1, . . . , l, are the equality constraint functions.
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Maximization vs. Minimization

Maximization of f(x) is equivalent to minimization of −f(x).

x∗

fmax

fmin

x

f
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Feasible Region

We can express the general form as

minimize f(x)

subject to x ∈ Ω,

where Ω = {x : g(x) ≤ 0, h(x) = 0,xL ≤ x ≤ xU} is a subset of Rn Ω is called the
feasible region. 13/26



Type of Variables and Problems

Additions restrictions may be imposed on a variables xj as:
• xj is continuous (default)
• xj is binary (equals 0 or 1)
• xj is integer (equals 1 or 2 or 3, . . . or N )
• xj is discrete (e.g., takes values 10 mm or 20 mm or 30 mm, etc.)

Specialized name are given to the standard form such as:
• Linear Programming (LP): When all functions (objective and constraints) are
linear (in x)

• Integer Programming (IP): An LP when all variables are required to be integers.
• Mixed Integer Programming (MIP): An IP where some variables are required to
be integers, others are continuous.

• MINP: an MIP with nonlinear functions.
• Quadratic Programming (QP): When objective function is a quadratic function in
x and all constraints are linear.
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Type of Variables and Problems

• Convex Programming (CP): When objective is convex (for minimization) or
concave (for maximization), and the feasible region Ω is a convex set. Here , an
local minimum is also a global minimum. Powerful solution techniques that can
handle large number of variables exist for this category. Convexity of Ω is
guaranteed when all inequality constraints gi are convex functions and all
equality constraints hj are linear.

• Combinatorial Problems: These generally involve determining an optimum
permutation of a set of integers, or equivalently, and optimum choice among a
set of discrete choices. Some combinatorial problems can be posed as LP
problems (which are much easier to solve). Heuristic algorithms (containing
thumb rules) play a crucial role in solving large scale combinatorial problems
where the aim is to obtain near-optimal solutions rather than the exact
optimum.
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Optimization Problem Modeling

Determine the shortest distance d between a given point x0 =
[
x0
1 x0

2

]
and a given

lines

a0 + a1x1 + a2x2 = 0

a0 + a1x1 + a2x2 = 0

x

x0

d

x1

x2

minimize
x1,x2

(x1 − x0
1)

2 + (x2 − x0
2)

2

subject to a0 + a1x1 + a2x2 = 0

Matrix Form:

minimize
x1,x2

(x− x0)T (x− x0)

subject to aTx− b = 0,

where b = −a0 .
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Optimization Problem Modeling

Consider a uniformly loaded beam on two supports as shown in Fig. The beam length
is 2L units,and the spacing between supports is 2a units. We wish to determine the
halfspacing a/L so as to minimize the maximum deflection that occurs in the beam.

• When the support spacing is too
large wherein the maximum
deflection occurs at the center.

• When the spacing is too small
wherein the maximum deflection
occurs at the ends.

• The graph of deflection vs. spacing is
convex or cup-shaped with a
well-defined minimum.

We may state that the the maximum deflection δ at any locations in the beam, which
is a function of both position and support spacing, can be reduced to checking the
maximum at just two locations.
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Optimization Problem Modeling

The objective function f which is to be minimized is given by

f(a) = max
a≤x≤1

δ(x, a) = max{δ(0, a), δ(1, a)}

We can determine the optimum spacing a by solving the optimization problem

minimize
a

f(a)

s.t. 0 ≤ a ≤ 1
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Optimization Problem Modeling

• VLSI is a process used to build electronic components such as microprocessors
and memory ships comprising millions of transistors.

• The first stage is to produce a set of indivisible rectangular blocks called cells.
• The second stage, interconnection information is used to determine the relative
placements of these cells.

• The third state, implementation are selected for the various cells with the goal
of optimizing the total area, which is related to cost of the chips.

• floor plan optimization is the third stage.
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Optimization Problem Modeling

We have three rectangular cell. Dimensions of C1 is 5× 10, C2 is one of
(3× 8), (2× 12) or (6× 4), and C3 is chosen from (5× 8) or (8× 5). Relative ordering
of the cells must satisfy the following vertical and horizaontal ordering:

• Vertical: C2 must lie above C3
• Horizontal: C1 must lie to the left of C2 and C3.

We can solve this problem by using a mixed-integer nonlinear program.
• Let (xi, hi), i = 1, 2, 3 denote the width and height of cell i.
• (xi, yi) denote the coordinates of the left bottom corner of cell i
• LetW,H represent the width and height, respectively.

We have the constraints:

y1 ≥ 0, y1 + h1 ≤ H, y3 ≥ 0, y3 + h3 ≤ y1, y2 + h2 ≤ H

x1 ≥ 0, x1 + w1 ≤ x2, x1 + w1 ≤ x3, x2 + w2 ≤ W, x3 + w3 ≤ W
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Optimization Problem Modeling

Introducing the binary or 0/1 variables δij to implement discrete selection.

w2 = 8δ21 + 12δ22 + 4δ23, h2 = 3δ21 + 2δ22 + 6δ23

w3 = 5δ31 + 8δ31, h3 = 8δ31 + 5δ32

δ21 + δ22 + δ23 = 1 δ31 + δ32 = 1

δij = 0 or 1

There are 13 variables inthe problem are (xi, yi), δij ,W,H , and the objective function
is

f(W,H) = WH is to be minimized

The solution of this problem (using Branch and Bound procedure) is[
x1, y1, w1, h1, x2, y2, w2, h2, x3, y3, w3, h3

]
=

[
0, 0, 5, 10, 5, 7, 8, 3, 5, 0, 8, 5

]
The associated optimum objective is f = Area = 130 units.
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Optimization Problem Modeling

1

3

2

(0, 10)

(13, 7)

(13, 0)

(5, 0)(0, 0)
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Optimization Problem Modeling

The problem is as follow:
• Assume you have $ 100 and you want to invest it in four stocks– how much will
you invest in each?

• You have to balace between profit and risk, as some stocks may yield high
return with high risk, others may yield lower return with lower risk.

Mathematical modeling of this problem is as follows:
• Let ci, i = 1, . . . , n, represent the average return (for example two months
period) of stock i , with n = total number of stocks, σ2

i represent the variance of
each stock, where σi is the standard deviation, and xi = money invested in
stock i, expressed as a percentage of total investment.

Expected (average) return on total investment =

n∑
i=1

cixi

Variance of total investment =
n∑

i,j=1

σijxixj ,

where σij = correlation coefficient between a pair of stocks i and j.
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Optimization Problem Modeling

The inventor’s objective is to maximize return with limited risk (as indicated by
variance). The balance is achieved by a penalty function as

Objective function f =
n∑

i=1

cixi −
1

λ

n∑
i,j=1

σijxixj to be maximized,

where λ = a penalty parameter.
The optimization problem may be summarized in matrix form as

maximize cTx−
1

λ
xTRx

subject to xT
1 = 1, x ≥ 0

where 1 is a vector that all element are one.
This problem is a quadratic programming (QP) problem, owing to a quadratic objective
function and linear constraints. R is a square, symmetric correlation matrix with σ
along the diagonal. Solution x gives the percentage portfolio investment.
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Optimization Problem Modeling

• Refueling Optimization
• Renumbering for Efficient Equation Solving in Finite Elements
• Shape Optimization

Bicycle Chain link
• Sizing Optimization

• Noise Reduction Problem
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