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Objective and Motivation

Objective:

• Understand the Semi-Definite Programming (SDP)

Motivation:

• Many practical problems in operations research and combinatorial optimization
can be modeled or approximated as semidefinite programming problems. In
automatic control theory, SDPs are used in the context of linear matrix
inequalities.
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Primal Semi-Definite Programming

Let Sn be the space of real symmetric n× n matrices. We have

tr(AB) =
n∑

i=1

n∑
j=1

aijbij

where A = {aij} and B = {bij} are two members of Sn .

The primal Semi-Definite Programming (SDP) is defined as

minimize tr(CX)

subject to tr(AiX) = bi for i = 1, 2, . . . , p

X ⪰ 0

(1)

• An important feature of the problem is that the variable involved is a matrix
rather than a vector.

• The SDP is closely related to several important classes of optimization problems.
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Primal Semi-Definite Programming

If matrices C and Ai for 1 ≤ i ≤ p are all diagonal matrices, i.e.,

C = diag{c}, Ai = diag{ai} where c ∈ Rn×1 and ai ∈ Rn×1

tr(CX) = c1x1 + c2x2 + · · ·+ cnxn = cT x

tr(AiX) = ai1x1 + ai2x2 + · · ·+ ainxn = Aix

The SDP is reduced to the standard-form LP problem

minimize cT x

subject to Ax = b

x ≥ 0

To se the similarity between X ⪰ 0 and x ≥ 0, we need the concept of convex conel
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Dual Semi-Definite Programming

Definition 1: A convex cone K is a convex set such that x ∈ K implies that αx ∈ K for
any scalar α ≥ 0.

By definition, the set {X : X ∈ Rn×n, X ≥ 0} and {x : x ∈ Rn×1, x ≥ 0} are convex
cones.

The dual LP problem

maximize − bT y

subject to −AT y + s = c

s ≥ 0

The dual SDP problem

maximize − bT y

subject to −
p∑

i=1

yiAi + S = C

S ⪰ 0

(2)
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Dual Semi-Definite Programming

We assume that there exist X ∈ Sn, y ∈ Rp , and S ∈ Sn with X ⪰ 0 and S ⪰ 0 such
that X is feasible for the primal and {y, S} is feasible for the dual, and

tr(CX) + bT y = tr

(
−

p∑
i=1

yiAi + S

)
X + bT y = tr(SX) ≥ 0

tr (S∗X∗) = 0 where S ⪰ 0, X ⪰ 0

S∗ = C +

p∑
i=1

y∗i Ai and tr (CX∗) + bT y∗ = 0

The duality gap becomes

δ (X, y) = tr (CX) + bT y, X ∈ Fp and {y, S} ∈ Fd

Fp = {X : X ⪰ 0, tr (AiX) = bi for 1 ≤ i ≤ p

Fd =

{
{y, S} : −

p∑
i=1

yiAi + S = C, S ⪰ 0

}
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Dual Semi-Definite Programming

The gap δ (X, y) is nonnegative and it is reduced to zero at the solutions X∗ and S∗

of the primal and dual problems, respectively.

The dual SDP problem becomes

maximize − bT y

subject to − C −
p∑

i=1

yiAi ⪰ 0

Equivalent to

minimize cT x

subject to F (x) ⪯ 0

where c ∈ Rp×1 , x ∈ Rp×1 , and

F (x) = F0 +

p∑
i=1

xiFi

with Fi ∈ Sn for 0 ≤ i ≤ p.

7/27



Semi-Definite Programming

minimize xTHx+ pT x with H ⪰ 0

subject to Ax ≤ b

minimize δ

subject to xTHx+ pT x ≤ δ

Ax ≤ b

H ⪰ 0, we can find a matrix Ĥ such that H = ĤT Ĥ , hence

xTHx+ pT x ≤ δ ⇒ δ − pT x− (Ĥx)T (Ĥx) ≥ 0

Using Schur complement, it is

G(δ, x) =

[
−In −Ĥx

−(Ĥx)T −δ + pT x

]
⪯ 0

G(δ, x) is affine wiht respect to variables x and δ.
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Semi-Definite Programming

The linear constraints Ax ≤ b can be expressed as

F (x) = F0 +
n∑

i=1

xiFi ⪰ 0 where F0 = − diag{b}, Fi = diag{ai}

Setting x̂ =

[
δ

x

]T
, the general convex QP problem can be reformulated as the SDP

problem

minimize ĉT x̂

subject to E(x̂) ⪯ 0

where ĉ ∈ Rn+1 with ĉ =
[
1 0 · · · 0

]T
and

E(x̂) = diag{G(δ, x), F (x)}
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Semi-Definite Programming

The KKT conditions for the SDP (1) can be stated as follows:

• Matrix X∗ is a minimizer of the SDP Problem (1) if and only if there exist a
matrix S∗ ∈ §n and a vector y∗ ∈ Rp such that

−
p∑

i=1

y∗i Ai + S∗ = C

tr(AiX
∗) = bi for 1 ≤ i ≤ p

tr(S∗X∗) = 0

X∗ ⪰ 0, S∗ ⪰ 0

(3)

• A set {X∗, y∗, S∗} satisfying (3) is called a primal-dual solution. Itt follows that
{X∗, y∗, S∗} is a primal-dual solution if an only if X∗ solves the primal
problem and {y∗, S∗} solves the dual problem.

10/27



Semi-Definite Programming

The central path consists of a set {X(τ), y(τ), S(τ)} such that for each τ > 0 the
equations satisfy

−
p∑

i=1

yi(τ)Ai + S(τ) = C

tr(AiX(τ)) = bi for 1 ≤ i ≤ p

tr(X(τ)S(τ)) = τI

X(τ) ⪰ 0, S(τ) ⪰ 0

(4)

The duality gap on the central path

δ [X(τ), y(τ)] = tr (CX(τ)) + bT y(τ) = tr

([
−

p∑
i=1

yi(τ)Ai + S(τ)

]
X(τ)

)
+ bT y(τ)

= tr (S(τ)X(τ)) = tr(τI) = nτ ⇒ lim
τ→0

δ [X(τ), y(τ)] = 0
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Semi-Definite Programming

• The SDP usually generates iterates by obtaining approximate solution (4) for a
sequence of decreasing τk > 0 for k = 0, 1, . . .. If we let

G(X, y, S) =



−
∑p

i=1 yiAi + S − C

tr(A1X)− b1
...

tr(ApX)− bp

XS − τI


Then the first three equation of (4) can be expressed as G(X, y, S) = 0.

• X(τ)S(τ) = τI is rewritten in symmetric form as

XS + SX = 2τI
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Semi-Definite Programming

• We start with a given set {X, y, S} and find increments ∆X,∆y, and ∆S with
∆X and ∆S symmetric such that set {∆X,∆y,∆X} satisfies the linearized
equations

−
p∑

i=1

∆yiAi +∆S = C − S +

p∑
i=1

yiAi

tr (Ai∆X) = bi − tr (AiX) for 1 ≤ i ≤ p

X∆S +∆SX +∆XS + S∆X = 2τI −XS − SX

(5)

• The equation (5) can be reformulated as

J

∆x

∆y

∆s

 =

rdrp
rc

 , where J =

0 −AT I

A 0 0

E 0 F

 (6)
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Semi-Definite Programming

The solution of (6) is given by

∆x = −E−1
[
F (rd +AT∆y)− rc

]
∆s = rd +AT∆y

M∆y = rp +AE−1(Frd − rc)

(7)

where the matrixM , which is known as the Schur complement matrix, is given by

M = AE−1FAT
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Semi-Definite Programming

1. Input Ai for 1 ≤ i ≤ p, b ∈ Rp , C ∈ Rn×n , and a strictly feasible set
{Xp, y0, S0} that satisfies (1) and (2) with X0 ≻ 0 and S0 ≻ 0. Choose a scalar
σ in the range 0 ≤ σ < 1. Set k = 0 and initialize the tolerance ε for the duality
gap δk .

2. Compute δ =
tr(XkSk)

n

3. If δk ≤ ε, output solution {Xk, yk, Sk} and stop; otherwise, set τk = σ
tr(XkSk)

n

and continuous with Step 4

4. Solve (6) with (7) where X = Xk , y = yk , S = Sk , and τ = τk . Convert the
solution {∆x,∆y,∆s} into {∆X,∆y,∆S} with ∆X = mat(∆x) and
∆S = mat(∆s).

5. Choose a parameter γ in the range 0 < γ < 1 and determine parameters α and
β are

α = min(1, γα̂, β = min(1, γβ̂)

15/27



Semi-Definite Programming

5. Cont. where α̂ = maxXk+ᾱ∆X⪰0(ᾱ) and β̂ = maxSk+β̄∆S⪯(β̄)

6. Set

Xk+1 = Xk + α∆X

yk+1 = yk + β∆y

Sk+1 = Sk + β∆S

Set k = k + 1 and repeat form Step 2.

Writing your own code is not a good idea, we will use a well test available package like
CVX or JuMP instead.
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Eigenvalue Problem Example

• Poles location plays very important role in the closed-loop control system
design. We can obtain the poles of the linear system by solving the eigenvalues
of the system matrix.

• IfM is a square n× n matrix, then λ is an eigenvalue ofM with corresponding
eigenvector x if

Mx = λx and x ̸= 0

The λ is an eigenvalue ofM if and only if λ is a root of the polynomial:

p(λ) = det(M − λI) that is p(λ) = det(M − λI) = 0

• IfM is symmetric, then all eigenvalues λ ofM must be real numbers, and these
eigenvalues can be ordered so that λ1 ≥ λ2 ≥ · · · ≥ λn .
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Eigenvalue Problem Example

• The corresponding eigenvectors q1, . . . , qn ofM cna be chosen so that they are
orthogonal, namely (qi)T (qj) = 0 for i ̸= j, and can be scaled so that
(qi)T (qi) = 1. This mean the matrix Q satisfies:

QTQ = I, and QT = Q−1

We call it as a orthonormal matrix.

• The matrix D is

D =


λ1 0 · · · 0

0 λ2 · · · 0

0 0
. . . 0

0 0 · · · λn

 , M = QDQT
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Eigenvalue Problem Example

• M ⪰ 0 if an only ifM = QDQT where the eigenvalues (i.e., the diagonal
entries of D) are all nonnegative.

• IfM ⪰ tI if and only if λmin(M) ≥ t. To see this, let us consider the eigenvalue
decomposition ofM = QDQT , and consider the matrix R defined as:

R = M − tI = QDQT − tI = Q(D − tI)QT

Then

M ⪰ tI ⇐⇒ R ⪰ 0 ⇐⇒ D − tI ⪰ 0 ⇐⇒ λmin(M) ≥ t.

The last property is because D is a diagonal matrix.
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Semi-Definite Programming : Example

Find scalars α1, α2 , and α3 such that the maximum eigenvalue of
F = A0 + α1A1 + α2A2 + α3A3 is minimized where

A0 =

 2 −0.5 −0.6

−0.5 2 0.4

−0.6 0.4 3

 , A1 =

0 1 0

1 0 0

0 0 0



A2 =

0 0 1

0 0 0

1 0 0

 , A3 =

0 0 0

0 0 1

0 1 0



Solution: As matrix F is symmetric, there exists an orthogonal matrix U such that
UTFU = diag(λ1, λ2, λ3} with λ1 ≥ λ2 ≥ λ3 . Hence we can write

UT (tI − F )U = tI − UTFU = diag(t− λ1, t− λ2, t− λ3)
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Semi-Definite Programming : Example

The problem can be formulated as

minimize t

subject to tI − F ⪰ 0

Using CVX, we have t = 3.000, which is the minimized maximum eigenvalue of F .

clear all
A0 = [2 -0.5 -0.6;

-0.5 2 0.4;
-0.6 0.4 3];

A1 = [0 1 0; 1 0 0; 0 0 0];
A2 = [0 0 1; 0 0 0; 1 0 0];
A3 = [0 0 0; 0 0 1; 0 1 0];

cvx_solver sdpt3

cvx_begin
variables y(3), t;

F = A0 + y(1)*A1 + y(2)*A2 ...
+ y(3)*A3;

minimize t
subject to

t*eye(3) - F >= 0
cvx_end
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Semi-Definite Programming : Example

By using JuMP we obtain the same solution.

using JuMP,LinearAlgebra, SCS

begin
A0 = [2 -0.5 -0.6;

-0.5 2 0.4;
-0.6 0.4 3];

A1 = [0 1 0; 1 0 0; 0 0 0];
A2 = [0 0 1; 0 0 0; 1 0 0];
A3 = [0 0 0; 0 0 1; 0 1 0];

I = Matrix{Float64}(
LinearAlgebra.I, 3, 3)

model = m = Model(SCS.Optimizer)
@variable(model, y[1:3])
@variable(model, t)
@objective(model, Min, t)

F = A0 + y[1]*A1 +
y[2]*A2 + y[3]*A3

@constraint(model,
t .* I - F .>= 0)

optimize!(model)
r = objective_value(model)
println(r)

end
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Constraints on the H∞ Norm

Consider the system with transfer function T (s) as state space realization

ẋ(t) = Ax(t) +Bw(t), x(0) = 0

z(t) = Cx(t) +Dw(t)

Assuming that T (s) is stable, the H∞ norm of the system is

∥T∥2∞ = max
w ̸=0

∫∞
0 zT (t)z(t)dt∫∞
0 wT (t)w(t)dt

, x(0) = 0.

It follows that ∥T∥∞ < γ is equivalent to

∫ ∞

0
(zT (t)z(t)− γ2wT (t)w(t))dt < 0

Holding true for all square integrable, non-zero w(t).
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Constraints on the H∞ Norm

Introduce a Lyapunov function V (x) = xTPx with P = PT > 0. Since
x(0) = x(∞) = 0, the constraint ∥T∥∞ < γ is enforced by the existence of a matrix
P = PT > 0 such that

dV (x)

dt
+

1

γ
zT (t)z(t)− γwT (t)w(t) < 0

for all x(t), w(t); to turn into a LMI, substitute

dV (x)

dt
= xT (ATP + PA)x+ xTPBw + wTBTPx, z = Cx+Dw

To obtain

[
x

w

]T ATP + PA+ 1
γ
CTC PB + 1

γ
CTD

BTP + 1
γ
DTC −γI + 1

γ
DTD

[x
w

]
< 0
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Constraints on the H∞ Norm

For ∥T∥∞ < γ the above must hold for all x and w, thus the block matrix must be
negative definite. The condition can be rewritten as

[
ATP + PA PB

BTP −γI

]
+

1

γ

[
CT

DT

] [
C D

]
< 0

By Schur complement, we have

Theorem (Bound real lemma)
∥T∥∞ < γ if and only if there exists a positive definite, symmetric matrix P that
satisfies the linear matrix inequality

A
TP + PA PB CT

BTP −γI DT

C D −γI

 < 0
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Constraints on the H∞ Norm

sys = rss(3,3);
A = sys.a; B = sys.b; C = sys.c; D = sys.d;
n = size(A,1); nu = size(B,2); ny = size(D,1);

cvx_begin sdp
variable P(n,n) symmetric
variable gm;

minimize gm;
subject to

P >= 0;
[A'*P + P*A, P*B, C';

B'*P , -gm*eye(nu), D';
C, D, -gm*eye(ny)] <= 0;

cvx_end

display(P);
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