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- Understand the Quadratic Programming (QP)
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Singular-Value Decomposition (SVD)

Given a matrix A € C™*™ of rank r, there exist unitary matrices U € C™*™ and
V € C™**™ such that

S 0
A =UxVHY wherex = [0 } , and S = diag{o1,02,...,0.},
mXn

where oy > 09 > --- > o, > 0.

- The matrix decomposition A = UXVH is known as the singular-value
decomposition (SVD) of A. {-}# is a complex conjugate transpose. If A is a
real-values matrix, then U and V become orthogoanl matrices and VH
becomes VT

- The positive scalars o; fori =1,2,...,r are called the singular values of A.

- fU = [ul Ug - um] and V = [U1 Vo e Un}, vectors u; and v;
are called the left and right singular vectors of A. We have

SR

H _
AA 7U[0 0

2
UH, AHA:V[SO 8} vH
nxn

:|m><m

- See lecturell/svd_ex.jLl. 3/29



The Moore-Penrose pseudo-inverse

The Moore-Penrose pseudo-inverse of a matrix A € C™*" is defined as the matrix
AT € Cn*™ that satisfies the following four conditions:

1. AATA=A

2. ATAAT = At

3. (AADHYH = AAT
4 (ATAYH = ATA

The example of At is (ATA)~1AT. The Moore-Penrose pseudo-inverse of A can be
obtained as

871

At =vxiuf, =f= 0

0
:| , and 571:diag{afl,agl,...,aﬁl}
nxm
T . H
AT =30

=1 91
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The Moore-Penrose pseudo-inverse

For an underdetermined system of linear equations
Ax=b =x=ATb+V,¢

Given

28284 —1 1 1600 16
—{' ]7ATA—0 2 —2|=Vv]|o 4 o|VT
28284 1 -1
0 -2 2 0 0 0

The nonzero singular values of A are o1 = /16 =4 and o3 = v/4 = 2. By using a
command [U1, S1, V1] = svd(A'*A) of Matlab orU1, S1, V1 = svd(A'*A)
of Julia to obtain S and V= V1. Then using [U2, S2, V2] = svd(A) of Matlab or
U2, S2, V2 = svd(A) of Julia to get U=U2.
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The Moore-Penrose pseudo-inverse

We obtain

1 0 0
v=lo 07071 —0.7071 :[m o vg],
0 —0.7071 —0.7071

0.7071 —0.7071
U= = [ul uz]
0.7071 0.7071

- 0.1768  0.1768
Af=—L1 4+ =2 — 1 02500 0.2500
0.2500  —0.2500
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QP Problem

Consider a problem

1
minimize f(x) = ExTHx +xTp
X

subject to Ax = b, A € RPX™

The solution of Ax = b is x = V,.¢ + ATb, where ¢ is an arbitrary »-dimensional
vector with r =n — p, At denotes the Moore-Penrose pseudo-inverse of A, V. is
composed of the last » columns of V, and A = USVT. Then

1 .
mingnize = §¢TH¢ + ¢T'p,

whereh = VITHV, and p = VI (HAb + p)
The global minimizer of the problem is x* = V,.¢* + Atb, where ¢* is the solution
of the linear system of equations H¢p = —p.
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QP Problem: Example

Solve the QP problem:
(X3 +%3) +2x1 + %2 — x3

1
minimize f(x) = 5

subject to Ax=Db

where A = [0 1 1],andb: 1.

—0.7071 —0.707 L -
AT (ATA) =0 05 03]

V.= 05 05 |,
0.5 0.5
A 15 0.5 —0.2322
H=VIHV, = : f;:VT(HATbﬂ)):
05 1.5 —3.7677

x* =V,¢* +Afb = [—2 2 S]T
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Quadratic Optimization Problems

The quadratic problem is

1
minimize axTHx + pTx +c

subject to Ax=Db
Cx <d

Example: least-squares

minimize ||Ax — b||2

- analytical solution x* = Afb

- we can add linear constraints ,eg. I < x < u
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Quadratic Optimization Problems

o U

1
[\
T

arg minimize ||f(k) — Y1 (k)H%
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Quadratic Optimization Problems

Consider

1
minimize f(x) = §XTHX +xTp

subject to Ax=0Db

Assume A € RPX™ s of full row rank and p < n. By using the first-order necessary
conditions V fo(x*) + ATX = 0, we have

Hx* +p+ATA* =0 [H AT]
Ax* —b=0 A 0

If H is positive definite and A is of full row rank, then the system matrix (1) is
nonsingular and the solution x* is the unique global minimizer of the problem.
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Quadratic Optimization Problems

The block matrix inversion lemma is

-1
A D B A1 —A-1DB-!
Cc B| |-B'ca! B l'+B-lcA'DB!
where
A=A-DB'C

Then we have

A =—(AH'AT)"Y(AH 'p+Db)
x*=-H Y ATA +p)
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Sequential Quadratic Optimization Problems (SQP)

Equality Constrained SQP

minimize f(x) = x’ Hx +p”’x
X

subject to  h(x) =0
The Lagrangian is £(x, A) = f(x) + ATh(z). At the minimum point, we have

VxL(x,A) = VI(x) +IFA=0
VaL(x,A) =h(x)=0

The quadratic approximation:

VxL(x + Ax, A+ AX) = VR L(x,A) + V2L(x, \)Ax + di (VALx,A)T AX
x
= VxL(x,A) + HsAx + IT Ax
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Sequential Quadratic Optimization Problems (SQP)

VAL(x 4 A%, A+ AX) = VAL(x, A) + Va (Ve L£(x, X)) Ax + V2L(x, A)AX

= h(x) + JpAx
He JT| |Ax|  |—VxL(x,A)
J, o0 N

AX —h(x)

where

Xp41 = X + apAxy

Akl = A + AN
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Interior-Point Methods for Convex QP Problems

By using slack variables,

1
minimize f(x) = ixTHerpr
o - 1op o 2
minimize f(%) = EXTHX s subject to Ax=Db

subject to Ax <b —-x<0

We have L£(x, A, p) = %xTHx +xTp — uTx + AT (Ax — b) and
g(A, p) =infy , L(x, A, ) ifand only if VL =0 or —ATX\ + p— Hx = p The dual
problem becomes

1
maximize h(x, A, p) = 7§xTHx - ATp
subjectto — ATA+pu—Hx=p (3)

pn=0
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Interior-Point Methods for Convex QP Problems

The KKT conditions

Ax—-b=0forx>0
—ATAX+p—Hx—p=0forp>0 (4)
Xp =0,
where X = diag{z1,z2,...,Zn}.
Let W = {x, X\, u} be a feasible for the problems (2). The duality gap can be obtained

for {x, A\, u} as

5, A,p) = f(x) —h(x,A, u) =x"Hx +x"p+A"b
=xT(=ATA+p) + 2T =xTp

16/29



Interior-Point Methods for Convex QP Problems

Setting w(7) = {x(7), A(7), u(7)} that satisfies the KKT condition, the last line of (4)
is changed to
Xp =rT1e
T
e= [1 1 - 1} cR"
(1), A(r), p(1)] = x" (T)u(7) = nT
Hence the duality gap approaches zero linearly as 7 — 0.
Let wi = {xx, Ak, by, } De such that x;, is strictly feasible for the primal problem (2)
and {Ag, py, } is strictly feasible for the dual problem (3). The increment set is

0w = {0x,0,0,} Weneed w1 = {Xp41, Mpg1, Mg 1} = Wi + 0w remains
strictly feasible and approaches the central path.
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Interior-Point Methods for Convex QP Problems

If wy, satisfy the KKT and central path condition with 75,41, we have

A(Xk+6z)7b=0
—AT(Ak +6x) + (px +6u) —H(x, +82) —p=0
(X +AX) (g +0u) = Thr1€

Ad, =0

—Hé, — AT6,+6,=0
AXpy, + X8, + AXS, = 11 — Xpy
M, + X8, = 1 — Xpuy,

where AX = diag{(6z)1, (62)2, ..., (8z)n}, M = diag{(ps)1, ()2, - -, (Lp)n},
and AX4,, is neglected.
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Interior-Point Methods for Convex QP Problems

Solving (6) we have

o=—-Yy
8, = —IXATS, —y @)
5, =Héb, + ATS)

whereI' = (M + XH)"!, Y = (ATXAT)"'A and y = T(Xpy, — Tpr1€)
Since x, > 0 and p;, > 0, matrices X and M are positive definite. Therefore
X~1M + H is also positive definite and the inverse of matrix

M + XH = X(X~'M + H)

Since A is of full row rank, ATXAT = A(X~'M + H)"'AT
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Interior-Point Methods for Convex QP Problems

Primal-dual path-following algorithm for the Convex QP problem

1. Input A, b, ¢, and wo = {x0, Ao, o} Set k = 0and p > /n (n is a dimension
of x), and initialize the tolerance ¢ for the duality gap.

2. If pl 'z, < e, output solution w* = wy, and stop; otherwise, continue with Step
3

T
3. Set Tyl = ’jﬁr’;"' and compute 8y = {8z, 8,0, } using (7).
4. compute step size ay, as follow:

ap=(1- 1076)O¢max Qmax = min(ap, aq)

where

ap = = min
P z‘with(&,‘)i<0|: (8,)i

iwithr?tilil)i<0 |: (02)i
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Interior-Point Methods for Convex QP Problems

- The previous algorithm requires a strictly feasible wq, which might be difficult
to obtain particularly for large-scale problems.

- Let wi = {xk, Ak, py } be such that x;, > 0 and p;, > 0 but may not satisfy the
central path condition. We need to find the next iterate

Wgt1 = Xg + Qgpuw

such that xg1 > 0and py 4 > 0 and that 8, = {dz,02x,d,} satisfies the
equations

—H(zg +62) —p — AT(Ap +83) + (g +6,) =0
.A(X;c —+ JI) =b
M, + X0, = 1€ — Xy,
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Interior-Point Methods for Convex QP Problems

_H6, — AT8 + 6, = 14 .
rg=Hxp +p+ A" Xy — py,

Abd, =1
rp =b— Axy
Mé; + Xb, = Tir1e — Xpy,
The solution of w can be obtained as
6x = —Yo(Ayq +rp) I'= (M+XH) !
8, = —IXATS, —yy (8) Yo = (ATXAT)L
86, =Héz + ATS) +rg ya =T [X(py +ra) — Tri1€]
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Interior-Point Methods for Convex QP Problems

Nonfeasible-initialization Primal-dual path-following algorithm for the Convex QP
problem
1. Input A, b, ¢, and wo = {x0, Ao, g} Set k = 0and p > /n (nis a dimension
of ), and initialize the tolerance ¢ for the duality gap.
2. If pI'x), < e, output solution w* = wy, and stop; otherwise, continue with Step
3

T
3. Set7pii = ‘:L’fp’“ and compute 8y, = {8z, dx,d,.} using (8)

4. compute step size ay, as follow:

ap = (1 = 1076)04max Omax — nlin(ap: ad)

where

= min = min
i with (ax>i<o{ (0z2): i with (é,m<0{ (Ou)i
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Interior-Point Methods for Convex QP Problems

Solve the convex QP problem

| 4 0 0 -8
minimize f(x) = QIT 0 1 —1|x+xT|-6
0 -1 1 —6

subject to x1 +x2+23 =3

x>0

- Using gp_path_sf.m withxo =[111]", X0 =7, ptg = [31 17, which is
combined as a strictly feasible point wq. Using 14 iterations, the solution is
x* = [0.50 1.25 1.25]T".

- Using gp_path_nf.mwith xo = [1 22]7, Ao = 1, py = [0.2 0.2 0.2], which is
not a strictly feasible point wq. Using 16 iteration, the solution is
x* = [0.50 1.25 1.25]T".
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Interior-Point Methods for Convex QP Problems

Solve the shortest-distance between
triangle R and S shown in Figure below
and the point r* € R and s* € S that
yield the minimum distance.

T2, T4

T1,T3

Solution: Let r = [x1 22]7 € R and s = [z3 z4]T € S. The square of the distance

between r and s is given by

(1 —23)? + (22 — 24)? = xTHx,

x = [x1 2 T3 :134]T
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Interior-Point Methods for Convex QP Problems

The constraints of this problem are

120, 2220, ® +2x2<2, 1422, w3+w42>3, x3+214=<6

The problem can be formulated as the QP problem

1
minimize f(x) = —x? Hx -0 0 0
2 0 -1 0 0
subject to Ax <b 1 2 0 0
A = k] b =
0 0 0 -1
0 0 -1 -1
0 0 1 2

- We need to convert the problem into the form of (3). By letting x = x+ — x—
where xT > 0and x~ > 0, and then introducing slack vector n > 0.
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Interior-Point Methods for Convex QP Problems

Changing to Standard form, we have

1
ixTHx +xTp = i(x+ —x)THxY —x )+ (xt —x)Tp

Ax<b > AxT-x")+n=b

Then the problem is changed to

1 s
minimize Echch-i-chf) H e R**%4 A e R6*4
R 6x1 6x1
subject to A% =b pcER neR
>0 X€R4X1
H —H 0O4xs P xT
H=|-H H Ouel, p=|-p|, x=|x|, A =[ao -a
O6xa Osxa Opxe O6x1 n

Io'xs]
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Interior-Point Methods for Convex QP Problems

- We use nonfeasible-initialization method with xg = ones{14, 1},
Ao = ones{6,1},uy = ones{14, 1}, where ones{m, 1} represents a colmun
vector of dimension m whose elements are all equal to one.

- Settinge = 1075 and p = n + 20/n, the algorithm using gp_path_nf.m takes
11 iterations to converge to z*.

- The solution of x is

0.4
0.8
1.0
2.0

x* =%"[1:4] - %x"[5: 8 =

- The shortest distance is
shortest distance = 4/ (x*)THx* = 1.3416 unit
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