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Objective

• Understand the Quadratic Programming (QP)

2/29



Singular-Value Decomposition (SVD)

Given a matrix A ∈ Cm×n of rank r, there exist unitary matricesU ∈ Cm×m and
V ∈ Cn×n such that

A = UΣVH , where Σ =

[
S 0

0 0

]
m×n

, and S = diag{σ1, σ2, . . . , σr},

where σ1 ≥ σ2 ≥ · · · ≥ σr > 0.
• The matrix decomposition A = UΣVH is known as the singular-value
decomposition (SVD) of A. {·}H is a complex conjugate transpose. If A is a
real-values matrix, thenU and V become orthogoanl matrices and VH

becomes VT .
• The positive scalars σi for i = 1, 2, . . . , r are called the singular values of A.
• IfU =

[
u1 u2 · · · um

]
and V =

[
v1 v2 · · · vn

]
, vectors ui and vi

are called the left and right singular vectors of A. We have

AAH = U

[
S2 0
0 0

]
m×m

UH , AHA = V

[
S2 0
0 0

]
n×n

VH

• See lecture11/svd_ex.jl. 3/29



The Moore-Penrose pseudo-inverse

The Moore-Penrose pseudo-inverse of a matrix A ∈ Cm×n is defined as the matrix
A† ∈ Cn×m that satisfies the following four conditions:

1. AA†A = A

2. A†AA† = A†

3. (AA†)H = AA†

4. (A†A)H = A†A

The example of A† is (ATA)−1AT . The Moore-Penrose pseudo-inverse of A can be
obtained as

A† = VΣ†UH , Σ† =

[
S−1 0

0 0

]
n×m

, and S−1 = diag{σ−1
1 , σ−1

2 , . . . , σ−1
r }

A† =
r∑

i=1

viu
H
i

σi
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The Moore-Penrose pseudo-inverse

For an underdetermined system of linear equations

Ax = b =⇒ x = A†b+Vrϕ

Given

A =

[
2.8284 −1 1

2.8284 1 −1

]
, ATA =

16 0 0

0 2 −2

0 −2 2

 = V

16 0 0

0 4 0

0 0 0

VT

The nonzero singular values of A are σ1 =
√
16 = 4 and σ2 =

√
4 = 2. By using a

command [U1, S1, V1] = svd(A'*A) of Matlab or U1, S1, V1 = svd(A'*A)
of Julia to obtain S and V= V1. Then using [U2, S2, V2] = svd(A) of Matlab or
U2, S2, V2 = svd(A) of Julia to get U=U2.
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The Moore-Penrose pseudo-inverse

We obtain

V =

1 0 0

0 0.7071 −0.7071

0 −0.7071 −0.7071

 =
[
v1 v2 v3

]
,

U =

[
0.7071 −0.7071

0.7071 0.7071

]
=

[
u1 u2

]

A† =
v1uT

1

σ1
+

v2uT
2

σ2
=

 0.1768 0.1768

−0.2500 0.2500

0.2500 −0.2500
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QP Problem

Consider a problem

minimize
x

f(x) =
1

2
xTHx+ xTp

subject to Ax = b, A ∈ Rp×n

The solution of Ax = b is x = Vrϕ+A†b, where ϕ is an arbitrary r-dimensional
vector with r = n− p , A† denotes the Moore-Penrose pseudo-inverse of A, Vr is
composed of the last r columns of V, and A = UΣVT . Then

minimize
ϕ

=
1

2
ϕT Ĥϕ+ ϕT p̂,

where ĥ = VT
r HVr and p̂ = VT

r

(
HA†b+ p

)
The global minimizer of the problem is x∗ = Vrϕ

∗ +A†b, where ϕ∗ is the solution
of the linear system of equations Ĥϕ = −p̂.
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QP Problem: Example

Solve the QP problem:

minimize f(x) =
1

2

(
x2
1 + x2

2

)
+ 2x1 + x2 − x3

subject to Ax = b

where A =
[
0 1 1

]
, and b = 1.

Vr =

−0.7071 −0.707

0.5 −0.5

−0.5 0.5

 , AT
(
ATA

)−1
=

[
0 0.5 0.5

]T
,

Ĥ = VT
r HVr =

[
1.5 0.5

0.5 1.5

]
, p̂ = VT

(
HA†b+ p

)
=

[
−0.2322

−3.7677

]

x∗ = Vrϕ
∗ +A†b =

[
−2 −2 3

]T
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Quadratic Optimization Problems

The quadratic problem is

minimize
1

2
xTHx+ pTx+ c

subject to Ax = b

Cx ≤ d

Example: least-squares

minimize ∥Ax− b∥22

• analytical solution x∗ = A†b

• we can add linear constraints , e.g. l ≤ x ≤ u
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Quadratic Optimization Problems
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argminimize ∥f̂(k)− y1(k)∥22 .
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Quadratic Optimization Problems

Consider

minimize f(x) =
1

2
xTHx+ xTp

subject to Ax = b

Assume A ∈ Rp×n is of full row rank and p < n. By using the first-order necessary
conditions ∇f0(x∗) +ATλ = 0, we have

Hx∗ + p+ATλ∗ = 0

Ax∗ − b = 0

[
H AT

A 0

][
x∗

λ∗

]
=

[
−p

b

]
(1)

IfH is positive definite and A is of full row rank, then the system matrix (1) is
nonsingular and the solution x∗ is the unique global minimizer of the problem.
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Quadratic Optimization Problems

The block matrix inversion lemma is

[
A D

C B

]−1

=

[
∆−1 −∆−1DB−1

−B−1C∆−1 B−1 +B−1C∆−1DB−1

]

where

∆ = A−DB−1C

Then we have

λ∗ = −(AH−1AT )−1(AH−1p+ b)

x∗ = −H−1(ATλ∗ + p)
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Sequential Quadratic Optimization Problems (SQP)

Equality Constrained SQP

minimize
x

f(x) = xTHx+ pTx

subject to h(x) = 0

The Lagrangian is L(x,λ) = f(x) + λTh(x). At the minimum point, we have

∇xL(x,λ) = ∇f(x) + JT
hλ = 0

∇λL(x,λ) = h(x) = 0

The quadratic approximation:

∇xL(x+∆x,λ+∆λ) = ∇xL(x,λ) +∇2L(x,λ)∆x+
∂

∂x
(∇λL(x,λ))T ∆λ

= ∇xL(x,λ) +HL∆x+ JT
h∆x
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Sequential Quadratic Optimization Problems (SQP)

∇λL(x+∆x,λ+∆λ) = ∇λL(x,λ) +∇λ (∇xL(x,λ))∆x+∇2
xL(x,λ)∆λ

= h(x) + Jh∆x[
HL JT

h

Jh 0

][
∆x

∆λ

]
=

[
−∇xL(x,λ)

−h(x)

]

where

xk+1 = xk + αk∆xk

λk+1 = λk +∆λk
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Interior-Point Methods for Convex QP Problems

By using slack variables,

minimize f(x̃) =
1

2
x̃THx̃+ x̃Tp

subject to Ax̃ ≤ b

minimize f(x) =
1

2
xTHx+ xTp

subject to Ax = b

− x ≤ 0

(2)

We have L(x,λ,µ) = 1
2
xTHx+ xTp− µTx+ λT (Ax− b) and

g(λ,µ) = infλ,µ L(x,λ,µ) if and only if ∇L = 0 or −ATλ+ µ−Hx = p The dual
problem becomes

maximize h(x,λ,µ) = −
1

2
xTHx− λTb

subject to −ATλ+ µ−Hx = p

µ ≥ 0

(3)
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Interior-Point Methods for Convex QP Problems

The KKT conditions

Ax− b = 0 for x ≥ 0

−ATλ+ µ−Hx− p = 0 for µ ≥ 0

Xµ = 0,

(4)

where X = diag{x1, x2, . . . , xn}.
LetW = {x,λ,µ} be a feasible for the problems (2). The duality gap can be obtained
for {x,λ,µ} as

δ(x,λ,µ) = f(x)− h(x,λ,µ) = xTHx+ xTp+ λTb

= xT (−ATλ+ µ) + λTb = xTµ
(5)
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Interior-Point Methods for Convex QP Problems

Setting w(τ) = {x(τ),λ(τ),µ(τ)} that satisfies the KKT condition, the last line of (4)
is changed to

Xµ = τe

e =
[
1 1 · · · 1

]T
∈ Rn

δ[x(τ),λ(τ),µ(τ)] = xT (τ)µ(τ) = nτ

Hence the duality gap approaches zero linearly as τ → 0.

Let wk = {xk,λk,µk} be such that xk is strictly feasible for the primal problem (2)
and {λk,µk} is strictly feasible for the dual problem (3). The increment set is
δw = {δx, δλ, δµ}. We need wk+1 = {xk+1,λk+1,µk+1} = wk + δw remains
strictly feasible and approaches the central path.
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Interior-Point Methods for Convex QP Problems

If wk satisfy the KKT and central path condition with τk+1 , we have

A(xk + δx)− b = 0

−AT (λk + δλ) + (µk + δµ)−H(xk + δx)− p = 0

(X+∆X)(µk + δµ) = τk+1e

Aδx = 0

−Hδx −AT δλ + δµ = 0

∆Xµk +Xδµ +∆Xδµ = τk+1 −Xµk

Mδx +Xδµ = τk+1 −Xµk

(6)

where ∆X = diag{(δx)1, (δx)2, . . . , (δx)n} ,M = diag{(µk)1, (µk)2, . . . , (µk)n},
and ∆Xδµ is neglected.
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Interior-Point Methods for Convex QP Problems

Solving (6) we have

δλ = −Y y

δx = −ΓXAT δλ − y

δµ = Hδx +AT δλ

(7)

where Γ = (M+XH)−1,Y = (AΓXAT )−1A and y = Γ(Xµk − τk+1e)

Since xk > 0 and µk > 0, matrices X andM are positive definite. Therefore
X−1M+H is also positive definite and the inverse of matrix

M+XH = X(X−1M+H)

Since A is of full row rank, AΓXAT = A(X−1M+H)−1AT
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Interior-Point Methods for Convex QP Problems

Primal-dual path-following algorithm for the Convex QP problem

1. Input A,b, c, and w0 = {x0,λ0,µ0}. Set k = 0 and ρ >
√
n (n is a dimension

of x), and initialize the tolerance ε for the duality gap.

2. If µT
k xk ≤ ε, output solution w∗ = wk and stop; otherwise, continue with Step

3

3. Set τk+1 =
µT

k xk

n+ρ
and compute δw = {δx, δλ, δµ} using (7).

4. compute step size αk as follow:

αk = (1− 10−6)αmax αmax = min(αp, αd)

where

αp = min
i with (δx)i<0

[
−
(xk)i

(δx)i

]
, αd = min

i with (δµ)i<0

[
−
(µk)i

(δµ)i

]
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Interior-Point Methods for Convex QP Problems

• The previous algorithm requires a strictly feasible w0 , which might be difficult
to obtain particularly for large-scale problems.

• Let wk = {xk,λk,µk} be such that xk > 0 and µk > 0 but may not satisfy the
central path condition. We need to find the next iterate

wk+1 = xk + αkδw

such that xk+1 > 0 and µk+1 > 0 and that δw = {δx, δλ, δµ} satisfies the
equations

−H(xk + δx)− p−AT (λk + δλ) + (µk + δµ) = 0

A(xk + δx) = b

Mδx +Xδµ = τk+1e−Xµk
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Interior-Point Methods for Convex QP Problems

−Hδx −AT δλ + δµ = rd

Aδx = rp

Mδx +Xδµ = τk+1e−Xµk

rd = Hxk + p+ATλk − µk

rp = b−Axk

The solution of w can be obtained as

δλ = −Y0(Ayd + rp)

δx = −ΓXAT δλ − yd

δµ = Hδx +AT δλ + rd

(8)
Γ = (M+XH)−1

Y0 = (AΓXAT )−1

yd = Γ [X(µk + rd)− τk+1e]
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Interior-Point Methods for Convex QP Problems

Nonfeasible-initialization Primal-dual path-following algorithm for the Convex QP
problem

1. Input A,b, c, and w0 = {x0,λ0,µ0}. Set k = 0 and ρ >
√
n (n is a dimension

of x), and initialize the tolerance ε for the duality gap.

2. If µT
k xk ≤ ε, output solution w∗ = wk and stop; otherwise, continue with Step

3

3. Set τk+1 =
µT

k xk

n+ρ
and compute δw = {δx, δλ, δµ} using (8)

4. compute step size αk as follow:

αk = (1− 10−6)αmax αmax = min(αp, αd)

where

αp = min
i with (δx)i<0

[
−
(xk)i

(δx)i

]
, αd = min

i with (δµ)i<0

[
−
(µk)i

(δµ)i

]
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Interior-Point Methods for Convex QP Problems

Solve the convex QP problem

minimize f(x) =
1

2
xT

4 0 0

0 1 −1

0 −1 1

x+ xT

−8

−6

−6


subject to x1 + x2 + x3 = 3

x ≥ 0

• Using qp_path_sf.m with x0 = [1 1 1]T , λ0 = 7, µ0 = [3 1 1]T , which is
combined as a strictly feasible point w0 . Using 14 iterations, the solution is
x∗ = [0.50 1.25 1.25]T .

• Using gp_path_nf.m with x0 = [1 2 2]T , λ0 = 1, µ0 = [0.2 0.2 0.2]T , which is
not a strictly feasible point w0 . Using 16 iteration, the solution is
x∗ = [0.50 1.25 1.25]T .
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Interior-Point Methods for Convex QP Problems

Solve the shortest-distance between
triangle R and S shown in Figure below
and the point r∗ ∈ R and s∗ ∈ S that
yield the minimum distance.

1 2 3

1

2

3

0

r∗

s∗

R

S

x1, x3

x2, x4

Solution: Let r = [x1 x2]T ∈ R and s = [x3 x4]T ∈ S . The square of the distance
between r and s is given by

(x1 − x3)
2 + (x2 − x4)

2 = xTHx, H =


1 0 −1 0

0 1 0 −1

−1 0 1 0

0 −1 0 1

 , x = [x1 x2 x3 x4]
T
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Interior-Point Methods for Convex QP Problems

The constraints of this problem are

x1 ≥ 0, x2 ≥ 0, x1 + 2x2 ≤ 2, x4 ≥ 2, x3 + x4 ≥ 3, x3 + 2x4 ≤ 6

The problem can be formulated as the QP problem

minimize f(x) =
1

2
xTHx

subject to Ax ≤ b
A =



−1 0 0 0

0 −1 0 0

1 2 0 0

0 0 0 −1

0 0 −1 −1

0 0 1 2


, b =



0

0

2

−2

−3

6


• We need to convert the problem into the form of (3). By letting x = x+ − x−

where x+ ≥ 0 and x− ≥ 0, and then introducing slack vector η ≥ 0.
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Interior-Point Methods for Convex QP Problems

Changing to Standard form, we have

1

2
xTHx+ xTp ⇒

1

2
(x+ − x−)TH(x+ − x−) + (x+ − x−)Tp

Ax ≤ b ⇒ A(x+ − x−) + η = b

Then the problem is changed to

minimize
1

2
x̂T Ĥx̂+ x̂T p̂

subject to Âx̂ = b

x̂ ≥ 0

H ∈ R4×4, A ∈ R6×4

p ∈ R6×1, η ∈ R6×1

x ∈ R4×1

Ĥ =

 H −H 04×6

−H H 04×6

06×4 06×4 06×6

 , p̂ =

 p

−p

06×1

 , x̂ =

x
+

x−

η

 , Â =
[
A −A I6×6

]
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Interior-Point Methods for Convex QP Problems

• We use nonfeasible-initialization method with x0 = ones{14, 1},
λ0 = ones{6, 1},µ0 = ones{14, 1}, where ones{m, 1} represents a colmun
vector of dimensionm whose elements are all equal to one.

• Setting ε = 10−5 and ρ = n+ 20
√
n, the algorithm using gp_path_nf.m takes

11 iterations to converge to x̂∗ .

• The solution of x is

x∗ = x̂∗[1 : 4]− x̂∗[5 : 8] =


0.4

0.8

1.0

2.0


• The shortest distance is

shortest distance =
√

(x∗)THx∗ = 1.3416 unit
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