## Lecture 4 Forward Kinematics

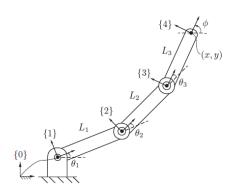
Dr.-Ing. Sudchai Boonto, Assistant Professor February 26, 2020

Department of Control System and Instrument Engineering, KMUTT



#### **Forward Kinematics**

The **forward kinematics** of a robot is the calculation of the position and orientation of its end-effector frame from its joint coordinates  $\theta$ .



$$x = L_1 \cos \theta_1 + L_2 \cos(\theta_1 + \theta_2) + L_3 \cos(\theta_1 + \theta_2 + \theta_3),$$
  

$$y = L_1 \sin \theta_1 + L_2 \sin(\theta_1 + \theta_2) + L_3 \sin(\theta_1 + \theta_2 + \theta_3),$$
  

$$\phi = \theta_1 + \theta_2 + \theta_3$$

1

#### **Forward Kinematics**

- Using only basic trigonometry, the more general spatial chains, the more complicated.
- A more systematic method of deriving the forward kinematics is by attaching reference frames to each link
- ▶ In this case, there are three links {1}, {2}, and {3}.
- ► The forward kinematics can be written as a product of four homogeneous transformation matrices:

$${}^{0}T_{4} = {}^{0}T_{1}{}^{1}T_{2}{}^{2}T_{3}{}^{3}T_{4},$$

where 
$${}^{0}T_{1} = \begin{bmatrix} \cos\theta_{1} & -\sin\theta_{1} & 0 & 0 \\ \sin\theta_{1} & \cos\theta_{1} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \qquad {}^{1}T_{2} = \begin{bmatrix} \cos\theta_{2} & -\sin\theta_{2} & 0 & L_{1} \\ \sin\theta_{2} & \cos\theta_{2} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
 
$${}^{2}T_{3} = \begin{bmatrix} \cos\theta_{3} & -\sin\theta_{3} & 0 & L_{2} \\ \sin\theta_{3} & \cos\theta_{3} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \qquad {}^{3}T_{4} = \begin{bmatrix} 1 & 0 & 0 & L_{3} \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

#### **Forward Kinematics**

- $\blacktriangleright$  Observe that  $^3T_4$  is constant and that each remaining  $^{i-1}T_i$  depends only on the joint variable  $\theta_i.$
- ► This representation is called **Denavit-Hartenberg parameters (D-H parameters)**.

 $\blacktriangleright$  Let us define M to be the position and orientation of frame  $\{4\}$  when all joint angles are set to zero. Then

$$M = \begin{bmatrix} 1 & 0 & 0 & L_1 + L_2 + L_3 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

▶ If  $\theta_1$  and  $\theta_2$  are held at their zero position theta the screw axis corresponding to rototing about joint 3 can be expressed in the  $\{0\}$  frame as

$$S_3 = \begin{bmatrix} \omega_3 \\ v_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \\ -(L_1 + L_2) \\ 0 \end{bmatrix}$$

Note  $v_3 = -\omega_3 \times q_3$ , where  $q_3$  is any point on the axis of joint 3 expressed in  $\{0\}$ , e.g.  $q_3 = (L_1 + L_2, 0, 0)$ .

lacktriangle The screw axis  $\mathcal{S}_3$  can be expressed in se(3) matrix form as

$$[S_3] = \begin{bmatrix} [\omega] & v \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & -(L_1 + L_2) \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

lacktriangle Therefore, for any  $heta_3$ , the matrix exponential representation for screw motions is

$${}^{0}T_{4} = e^{[\mathcal{S}_{3}]\theta}M \qquad \text{(for } \theta_{1} = \theta_{2} = 0\text{)}$$

For  $\theta_1=0$  and any fixed  $\theta_3$ , rotation about joint 2 can be viewed as applying a screw motion to the rigid (link 2/ link 3) pair

$${}^0T_4 = e^{[\mathcal{S}_2]\theta_2}e^{[\mathcal{S}_3]\theta_3}M$$
 (for  $\theta_1 = 0$ ),

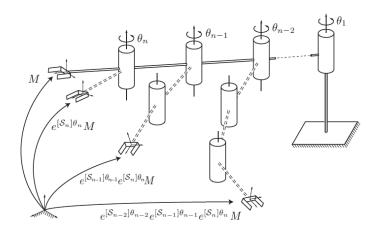
lacktriangle where  $[\mathcal{S}_3]$  and M are defined previously, and

$$[S_2] = \begin{bmatrix} 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & -L_1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Finally, keeping  $\theta_2$  and  $\theta_3$  fixed, rotation about joint 1 can be viewed as applying a screw motion to the entire rigid three-link assembly. We can write

$${}^{0}T_{4} = e^{[S_{1}]\theta_{1}}e^{[S_{2}]\theta_{2}}e^{[S_{3}]\theta_{3}}M,$$

where



- $\blacktriangleright$  Choose a fixed base frame  $\{s\}$  and an end-effector frame  $\{b\}$  attached to the last link.
- Let  $M \in SE(3)$  denote the configuration of the end-effector frame relative to the fixed base frame when the robot is in its zero position.

• Suppose that joint n is displaced to some joint value  $\theta_n$  the end effector from M then undergoes a displacement of the form

$$T = e^{[S_n]\theta_n} M,$$

where  $T \in SE(3)$  is the new configuration of the end-effector frame and  $S_n = (\omega_n, v_n)$  is the screw axis of joint n as expressed in the fixed base frame.

- ▶ If joint n is revolute then  $\omega_n \in \mathbb{R}^3$  is a unit vector in the positive direction of joint axis n;  $v_n = -\omega_n \times q_n$  and  $\theta_n$  is the joint angle.
- If joint n is prismatic then  $\omega_n=0$ ,  $v_n\in\mathbb{R}^3$  is a unit vector in the direction of positive translation, and  $\theta_n$  represents the prismatic extension/retraction.
- If the joint n-1 is also allowed to vary then this has the effect of applying a screw motion to link n-1. The en-effector frame thus undergoes a displacement of the form

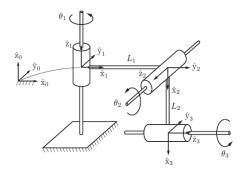
$$T = e^{\left[S_{n-1}\right]\theta_{n-1}} \left(e^{\left[S_n\theta_n\right]}M\right)$$

► Then

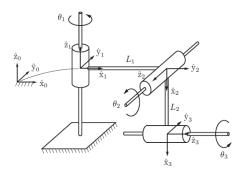
$$T = e^{[S_1]\theta_1} \cdots e^{[S_{n-1}]\theta_{n-1}} e^{[S_n\theta_n]} M$$

#### Summary:

- ▶ The end-effector configuration  $M \in SE(3)$  when the robot is at its home position;
- ▶ The screw axes  $S_1, ..., S_n$  expressed in the fixed base frame, corresponding to the joint motions when the robot is at its home position;
- ▶ The joint variables  $\theta_1, \ldots, \theta_n$ .



What are M and  $[\mathcal{S}_1]$ ,  $[\mathcal{S}_2]$  and  $[\mathcal{S}_3]$ ?



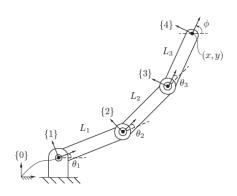
What are M and  $[\mathcal{S}_1]$ ,  $[\mathcal{S}_2]$  and  $[\mathcal{S}_3]$ ?

$$M = \begin{bmatrix} 0 & 0 & 1 & L_1 \\ 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & -L_2 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

- ▶ The screw axis  $S_1 = (\omega_1, v_1)$  for joint axis 1 is given by  $\omega_1 = (0, 0, 1)$  and  $v_1 = -\omega_1 \times q_1 = (0, 0, 0)$ .
- For joint 2,  $\omega_2=(0,-1,0)$  (consider  $\hat{y}_0$ ) and  $q_2=(L_1,0,0)$ , then  $v_2=-\omega_2\times q_2=(0,0,-L_1)$
- For joint 3,  $\omega_3=(1,0,0)$  and  $q_3=(0,0,-L_2)$  (distance compared with the rotating frame), then  $v_3=-\omega_3\times q_3=(0,-L_2,0)$

| i | $\omega_i$ | $v_i$          |
|---|------------|----------------|
| 1 | (0,0,1)    | (0, 0, 0)      |
| 2 | (0, -1, 0) | $(0,0,-L_1)$   |
| 3 | (1,0,0)    | $(0, -L_2, 0)$ |

```
% Lecture 4 supplymentary
syms L1 L2
M = [ 0 0 1 L1; 0 1 0 0; -1 0 0 -L2; 0 0 0 1];
w1 = [0; 0; 1]; q1 = [0; 0; 0];
w2 = [0; -1; 0]; q2 = [L1; 0; 0];
w3 = [1; 0; 0]; q3 = [0; 0; -L2];
v1 = cross(-w1, q1); v2 = cross(-w2, q2); v3 = cross(-w3, q3);
Sc1 = [skew(w1), v1; zeros(1,4)]
Sc2 = [skew(w2), v2; zeros(1,4)]
Sc3 = [skew(w3), v3; zeros(1,4)]
```



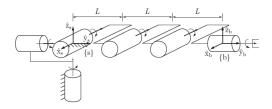
What are M and  $\left[\mathcal{S}_{1}\right],\left[\mathcal{S}_{2}\right]$  and  $\left[\mathcal{S}_{3}\right]$ ?

| i | $\omega_i$ | $v_i$                  |
|---|------------|------------------------|
| 1 | (0,0,1)    | (0,0,0)                |
| 2 | (0,0,1)    | $(0, -L_1, 0)$         |
| 3 | (0,0,1)    | $(0, -(L_1 + L_2), 0)$ |

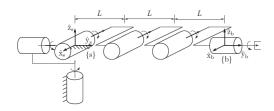
We can neglect the z-axis, in this case.

| i | $\omega_i$ | $v_i$            |
|---|------------|------------------|
| 1 | 1          | (0,0)            |
| 2 | 1          | $(0, -L_1)$      |
| 3 | 1          | $(0,-(L_1+L_2))$ |

$$M = \begin{bmatrix} 1 & 0 & L_1 + L_2 + L_3 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$



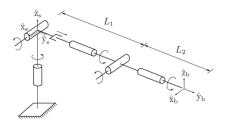
What are M and  $\left[\mathcal{S}_{1}\right],\left[\mathcal{S}_{2}\right],\left[\mathcal{S}_{3}\right],\left[\mathcal{S}_{4}\right],\left[\mathcal{S}_{5}\right]$  and  $\left[\mathcal{S}_{6}\right]$ ?



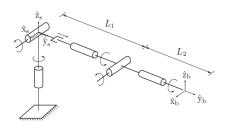
What are M and  $[S_1]$ ,  $[S_2]$ ,  $[S_3]$ ,  $[S_4]$ ,  $[S_5]$  and  $[S_6]$ ?

| i | $\omega_i$ | $p_i$      | $v_i$      |
|---|------------|------------|------------|
| 1 | (0, 0, 1)  | (0, 0, 0)  | (0,0,0)    |
| 2 | (0, 1, 0)  | (0,0,0)    | (0,0,0)    |
| 3 | (-1,0,0)   | (0,0,0)    | (0,0,0)    |
| 4 | (-1,0,0)   | (0, L, 0)  | (0, 0, L)  |
| 5 | (-1,0,0)   | (0, 2L, 0) | (0, 0, 2L) |
| 6 | (0, 1, 0)  | (0, 3L, 0) | (0,0,0)    |

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 3L \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$



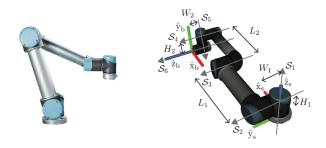
What are M and  $\left[\mathcal{S}_{1}\right],\left[\mathcal{S}_{2}\right],\left[\mathcal{S}_{3}\right],\left[\mathcal{S}_{4}\right],\left[\mathcal{S}_{5}\right]$  and  $\left[\mathcal{S}_{6}\right]$ ?



What are M and  $[\mathcal{S}_1]$ ,  $[\mathcal{S}_2]$ ,  $[\mathcal{S}_3]$ ,  $[\mathcal{S}_4]$ ,  $[\mathcal{S}_5]$  and  $[\mathcal{S}_6]$ ?

| i | $\omega_i$ | $p_i$               | $v_i$        |
|---|------------|---------------------|--------------|
| 1 | (0,0,1)    | (0,0,0)             | (0,0,0)      |
| 2 | (1,0,0)    | (0,0,0)             | (0,0,0)      |
| 3 | (0,0,0)    | (0, 1, 0)           | (0, 1, 0)    |
| 4 | (0,1,0)    | (0,0,0)             | (0,0,0)      |
| 5 | (1,0,0)    | $(0, L_1, 0)$       | $(0,0,-L_1)$ |
| 6 | (0, 1, 0)  | $(0, L_1 + L_2, 0)$ | (0,0,0)      |

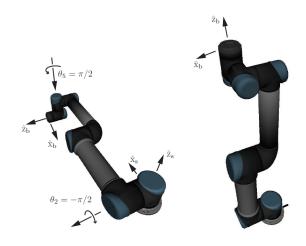
$$M = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & L_1 + L_2 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$



What are M and  $[\mathcal{S}_1]$ ,  $[\mathcal{S}_2]$ ,  $[\mathcal{S}_3]$ ,  $[\mathcal{S}_4]$ ,  $[\mathcal{S}_5]$  and  $[\mathcal{S}_6]$ ? If we set  $\theta_2=-\pi/2$  and  $\theta_5=\pi/2$ , with all other joint angles equal to zero. What is  $T(\theta)$ ? If  $W_1=109~\mathrm{mm}$ ,  $W_2=82~\mathrm{mm}$ ,  $L_1=425~\mathrm{mm}$ ,  $L_2=392~\mathrm{mm}$ ,  $H_1=89~\mathrm{mm}$ , and  $H_2=95~\mathrm{mm}$ 

| i | $\omega_i$ | $p_i$                               | $v_i$                  |
|---|------------|-------------------------------------|------------------------|
| 1 | (0,0,1)    | (0,0,0)                             | (0, 0, 0)              |
| 2 | (0, 1, 0)  | $(0, W_1, H_1)$                     | $(-H_1,0,0)$           |
| 3 | (0, 1, 0)  | $(L_1, W_1, H_1)$                   | $(-H_1,0,L_1)$         |
| 4 | (0, 1, 0)  | $(L_1 + L_2, 0, H_1)$               | $(-H_1, 0, L_1 + L_2)$ |
| 5 | (0,0,-1)   | $(L_1 + L_2, W_1, H_1)$             | $(-W_1, L_1 + L_2, 0)$ |
| 6 | (0, 1, 0)  | $(L_1 + L_2, W_1 + W_2, H_1 - H_2)$ | $(H_2-H_1,0,L_1+L_2)$  |

$$M = \begin{bmatrix} -1 & 0 & 0 & L_1 + L_2 \\ 0 & 0 & 1 & W_1 + W_2 \\ 0 & 1 & 0 & H_1 - H_2 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$



## Product of Exponentials second formulation

From the fact that  $A=PDP^{-1}$  for some  $D\in\mathbb{R}^{n\times n}$  and invertible  $P\in\mathbb{R}^{n\times n}$  then  $e^{At}=Pe^{Dt}P^{-1}$ . We have

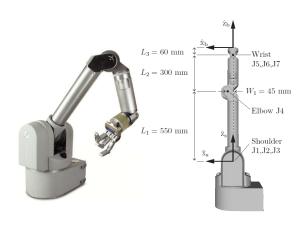
$$e^{M^{-1}PM} = M^{-1}e^PM \quad \Rightarrow \quad Me^{M^{-1}PM} = e^PM$$

We have

$$\begin{split} T(\theta) &= e^{[\mathcal{S}_1]\theta_1} \cdots e^{[\mathcal{S}_n]\theta_n} M \\ &= e^{[\mathcal{S}_1]\theta_1} \cdots M e^{M^{-1}[\mathcal{S}_n]M\theta_n} \\ &= e^{[\mathcal{S}_1]\theta_1} \cdots M e^{M^{-1}[\mathcal{S}_{n-1}M\theta_{n-1}]} e^{M^{-1}[\mathcal{S}_n]M\theta_n} \\ &= M e^{M^{-1}[\mathcal{S}_1]M\theta_1} \cdots e^{M^{-1}[\mathcal{S}_{n-1}]M\theta_{n-1}} e^{M^{-1}[\mathcal{S}_n]M\theta_n} \\ &= M e^{[\mathcal{B}_1]\theta_1} \cdots e^{\mathcal{B}_{n-1}\theta_{n-1}} e^{[\mathcal{B}_n]\theta_n}, \end{split}$$

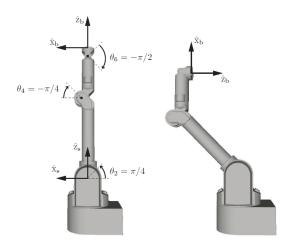
where each  $[\mathcal{B}_i]$  is given by  $M^{-1}[\mathcal{S}_i]$  M, i.e.,  $\mathcal{B}_i = [\operatorname{Ad}_{M^{-1}}] \mathcal{S}_i, i = 1, \dots, n$ . We call this form as a **body form**.

## Product of Exponentials 2nd formulation ex1



What are M and  $[\mathcal{S}_1]$ ,  $[\mathcal{S}_2]$ ,  $[\mathcal{S}_3]$ ,  $[\mathcal{S}_4]$ ,  $[\mathcal{S}_5]$ ,  $[\mathcal{S}_6]$  and  $[\mathcal{S}_7]$ ? If we set  $\theta_2=45^\circ$  and  $\theta_4=-45^\circ$ ,  $\theta_6=-90^\circ$  and all other joint angles equal to zero. What is  $T(\theta)$ ?

# Product of Exponentials 2nd formulation ex1



#### Reference

- P. Corke, Robotics, Vision and control: Fundamental Algorithms in MATLAB, 2nd, Springer, 2011
- 2. K. M. Lynch, and F. C. Park, *Modern Robotics: Mechanics, Planning, and Control,* Cambridge U. Press, 2017