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Fluid Systems

▶ The fluid systems have a lot of applications: actuators and processes that
involve mixing, heating, and cooling of fluids.

▶ Active vehicle suspensions use hydraulic and pneumatic actuators to provide
forces that supplement the passive spring and damping elements.

▶ water supply, waste treatment, and other chemical processing applications are
examples of a general category of fluid systems called liquid-level systems,
because they involve regulating the volumes, and therefore the levels of liquids
in containers such as tanks.
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Conservation of Mass

For incompressible fluids, conservation of mass is equivalent to conservation of
volume, because the fluid density is constant. That is

qm = ρqv ,

where qm and qv are the mass and volume flow rates. (In SI system, we use kg/s and
m2/s as units of qm and qv , respectively. )
Density and Pressure

▶ weight density: whose common symbol is γ. Its units is N/m3 , and it is related
to the mass density as γ = ρg, where g is the acceleration due to gravity. The
mass density of fresh water near room temperature is 1000 kg/m3 .

▶ Pressure is the force per unit area that is exerted by the fluid (F/A). The SI unit
of pressure is the Pascal (1 Pa = 1 N/m2). At sea level near room temperature,
atmospheric pressure, usually abbreviated pa , is 1.0133 × 105 Pa.

▶ Gage pressure is the pressure difference between the absolute pressure and
atmospheric pressure.

▶ Hydrostatic pressure is the pressure that exists in a fluid at rest. It is caused by
the weight of the fluid. For example, the hydrostatic pressure at the bottom of a
column of fluid of height h is ρgh. 3 / 32



A Hydraulic Brake System

▶ f1 = p1A1 and f2 = p2A2

▶ The point 1 is higher than point
2 , then p1 = p2 + ρgh. If h is
small the pressure ρgh can be
negligible compared to p2 , then
p1 = f1/A1= p2 = f2/A2 .

▶ The forces are therefore related
as f2 = f1A2/A1 .

▶ The force f3 can be obtained
from the lever relation
f3 = f2L1/L2 , assuming static
equilibrium or negligible lever
inertia.
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Conservation of Mass

The conservation of mass can be stated as follows:
▶ For a container holding a mass of fluidm, the time rate of change ṁ of mass in

the container must equal the total mass inflow rate minus the total mass
outflow rate.

▶ ṁ = qmi − qmo , where qmi is the mass inflow rate and qmo is the mass outflow
rate.

▶ The fluid massm is related to the container volume V bym = ρV . For the
incompressible fluid, ρ is constant, and thus ṁ = ρV̇ . Let qvi and qvo be the
total volume inflow and outflow rates. Thus, qmi = ρqvi , and qmo = ρqvo .
Substituting thee relationship into above equation gives

ρV̇ = ρqvi − ρqvo

▶ Cancel ρ to obtain

V̇ = qvi − qvo
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Conservation of Mass

We have

ṁ =
d

dt
ρAh = qmi(t)− qmo(t)

ρA
dh

dt
= qmi(t)− qmo(t)

which can be integrated as follows:

h(t) = h(0) +
1

ρA

∫ t

0
(qmi(τ)− qmo(τ))dτ
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A Hydraulic Cylinder

a) Develop a model of the motion of the displacement x of the mass in part (a) of
the figure.

b) Develop a model of the displacement x in part (b) of the figure.

(a) Assuming that p1(t) > p2(t). The net force acting on the piston and massm is
(p1 − p2)A, and thus from Newton’s law,

F = (p1(t)− p2(t))A = mẍ

ẋ = ẋ(0) +
A

m

∫ t

0
(p1(τ)− p2(τ))dτ
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A Hydraulic Cylinder

(b) Because we want an expression for the displacement x, we obtain an expression for
the equivalent mass of the rack, pinion, and load. The kinetic energy of the system is

KE =
1

2
mẋ2 +

1

2
Iθ̇2 =

1

2

(
m+

I

R2

)
ẋ2

because Rθ̇ = ẋ.
Thus the equivalent mass is

me = m+
I

R2

The required model can now be obtained by replacingm withme in the model
developed in part (a).
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A Mixing Process

▶ Pure water flows into the tank of volume V = 600

m3 at the constant volume rate of 5 m3/s.
▶ A solution with a salt concentration of si kg/m3

flows into the tank at a constant volume rate of 2
m3/s.

▶ Assume that the solution is perfect mixed. The
salt concentration so kg/m3 in the outflow is the
same as the concentration in the tank.

▶ The input is the concentration si(t), whose value
may change during the process, thus changing
the value of so .

Obtain a dynamic model of the concentration so .
Two mass species are conserved here: water mass and salt mass. The tank is always
full, so that the mass of watermw in the tank is constant and thus conservation of
water mass gives (ρw is the mass density of fresh water.)

dmw

dt
= 5ρw + 2ρw︸ ︷︷ ︸

inlet flow

− ρwqvo︸ ︷︷ ︸
outlet flow

= 0 =⇒ qvo = 7 m3/s
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A Mixing Process

The salt mass in the tank is soV (the concentration times volume), and the
concentration of salt mass gives

d

dt
(soV ) = 0(5)︸︷︷︸

water

+ 2si︸︷︷︸
solution

−soqvo = 2si − 7so

600
dso

dt
= 2si − 7so

The last equation is the model.
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Fluid Capacitance

It is very useful to think of fluid systems in terms of electrical circuits as follow:

Fluid quantity Electrical quantity

Fluid mass,m Charge, Q

Mass flow rate, qm Current , i

Pressure, p Voltage, v

Fluid linear resistance, R Electrical resistance, R

R = p/qm R = v/i

Fluid capacitance, C Electrical capacitance, C

C = m/p C = Q/v

Fluid inertance, I Electrical inductance, L

I = p/(dqm/dt) L = v/(di/dt)

The compatibility law is analogous to Kirchhoff’s voltage law, which states that the
sum of signaed voltage differences around a closed loop must be zero.
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Fluid Symbols and Sources

Fluid system symbols
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Capacitance Relations

Fluid capacitance
The fluid capacitance is the relation between stored fluid mass and the resulting
pressure caused by the stored mass. At a particular reference point (pr,mr) the slope
is C , where

C =
dm

dp

∣∣∣∣
p=pr

or Cv =
dV

dp

∣∣∣∣
p=pr

Thus, fluid capacitance C is the ratio of the change and C = ρCv .

We havem = ρV = ρAh and p = ρgh,
then h = p/ρg. The pressure can be
expressed as a function of the massm
stored in the tank as p = mg/A. Thus

m =
pA

g
and C =

dm

dp
=

A

g

13 / 32



Capacitance Relations

The fluid mass stored in the container is

m = ρV = ρ

∫ h

0
A(x)dx

dm

dh
= ρA

For such a container, conservation of mass give

dm

dt
= qmi − qmo =⇒ dm

dt
=

dm

dp

dp

dt
= C

dp

dt

Thus

C
dp

dt
=

dm

dt
= qmi − qmo =⇒ dm

dt
=

dm

dh

dh

dt
= ρA

dh

dt

so

ρA
dh

dt
= qmi − qmo
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Capacitance of a V-Shaped Trough

We have D = 2h tan θ, and the vertical cross-sectional area of the liquid is hD/2. The
the fluid mass is given by

m = ρV = ρ

(
1

2
hD

)
L = (ρL tan θ)h2, and p = ρgh

m = (ρL tan θ)

(
p

ρg

)2

=

(
L tan θ

ρg2

)
p2
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Capacitance of a V-Shaped Trough

Since qmo = 0 then Cṗ = qmi , or(
2L tan θ

ρg2

)
p
dp

dt
= qmi

which is a nonlinear equation because of the product pṗ. We can obtain the model for
the height by substituting h = p/ρg. The result is

(2ρL tan θ)h
dh

dt
= qmi
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Fluid Resistance

General fluid resistance relation

fluid resistance
We define the fluid resistance R as

R =
dp

dqm

∣∣∣∣
q=qmr

The resistance is the slope of the p versus
qm curve at some reference flow rate qmr

and reference pressure pr .
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Laminar Pipe Resistance

If the pipe flow is laminar, the laminar resistance for a level pipe of diameter D and
length L is given by

R =
128µL

πρD4
,

where µ is the fluid viscosity.

Combination of series and parallel
resistance
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Dynamic Models of Hydraulic
Systems



Liquid Level Systems

In liquid-level systems energy is stored in two ways:
▶ as potential energy in the mass of liquid in the tank.
▶ as kinetic energy in the mass of liquid flowing in the pipe.

In many systems, the mass of the liquid in the pipes is small compared to the liquid
mass in the tanks. If the mass of liquid in the pipe is small enough or is flowing at a
small enough velocity, the kinetic energy contained in it will be negligible compared to
the potential energy stored in the liquid in the tank.
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Liquid-Level System with a Flow Source

From conservation of mass (ĥ = h+ h̄ and the reference condition are h̄ and q̄mi)

dm

dt
= ρA

dĥ

dt
= q̂mi − q̂mo

= ρA
d(h+ h̄)

dt
= (qmi + q̄mi)− (qmo + q̄mo)

At the equilibrium point, the level is constant at h̄ and the inflow q̄mi and outflow q̄mo

are equal. The model becomes

ρA
dh

dt
= qmi − qmo
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Liquid-Level System with a Flow Source

Because R is a linearized resistance, then for small changes h in the height,

qmo =
1

R
[(ρgh+ pa)− pa] =

1

R
ρgh

Then we have

ρA
dh

dt
= qmi −

1

R
ρgh,

which can be rearranged as

dh

dt
+

1

R

g

A
h =

1

ρA
qmi

Noting that when qmi = 0 the inflow rate remains constant a q̄mi .

Second method: Since

dm

dt
=

dm

dp

dp

dh

dh

dt
= C(ρg)

dh

dt
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Liquid-Level System with a Flow Source

We have

ρgC
dh

dt
= qmi −

1

R
ρgh

RC
dh

dt
+ h =

R

g
qvi

dh

dt
+

1

RC
h =

1

gC
qvi

Take the Laplace transform of both sides and let all initial conditions to be zero, we
have (

s+
1

RC

)
H(s) =

1

gC
Qvi(s)

Thqvi
(s) =

H(s)

Qvi(s)
=

1/gC

s+ 1/RC

=
R/g

RCs+ 1

Note We can also use C = A/g to link both methods.
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Liquid Level Systems with Pressure Source

The tank shown in cross section in Figure
has a bottom area A. A pressure source
p̂s = ps(t) + p̄s is connected through a
resistance to the bottom of the tank, where
ps(t) is a given function of time. The
resistances R1 and R2 are linearized
resistances about the reference condition
(psr), Develop a model of h, the deviation
of the liquid height from the constant
reference height h̄, where ĥ = h+ h̄.

Solution The total mass in the tank inm = ρAĥ = ρA(h+ h̄), and from conservation
of mass

dm

dt
= ρA

d(h+ h̄)

dt
= ρA

dh

dt
= q̂mi − q̂mo

ρA
dh

dt
= (qmi + q̄mi)− (qmo + q̄mo) = (qmi − qmo) + (q̄mi − q̄mo).
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Liquid Level Systems with Pressure Source

Because at the reference equilibrium, the outflow rate equals the inflow rate,
q̄mi − q̄mo = 0, and we have

ρA
dh

dt
= qmi − qmo

This is a linearized model that is valid for small changes around the equilibrium state.
At the outlet flow we have

qmo =
1

R2
[(ρgh+ pa)− pa] =

ρgh

R2
.

Similarly for the mass inflow rate, we have

qmi =
1

R1
[(ps + pa)− (ρgh+ pa)] =

1

R1
(ps − ρgh)

The level model is

dh

dt
+

g

A

(
R1 +R2

R1R2

)
h =

1

ρAR1
ps
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Liquid Level Systems with Pressure Source

Using C = A/g, we have

dh

dt
+

1

C

(
R1 +R2

R1R2

)
h =

1

ρgR1C
ps

dh

dt
+

1

ReC
h =

1

ρgR1C
ps,

where Re = (R1+R2)/(R1R2). Taking the Laplace transform of both sides, we obtain

(
s+

1

ReC

)
H(s) =

1

ρR1C
Ps(s)

H(s)

Ps(s)
=

Re/(ρgR1)

ReCs+ 1
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Two Connected Tanks

The cylindrical tanks shown in Figure have bottom areas A1 and A2 . The total mass
inflow rate from the flow source is q̂mi(t), a given function of time. The resistances are
linearized resistances about the reference condition h̄1 , h̄2 , q̄mi . (a) Develop a model
of the liquid heights h1 and h2 . (b) Suppose the resistances are equal: R1 = R2 = R,
and the areas are A1 = A and A2 = 3A. Obtain the transfer function H1(s)/Qmi(s).
(c) Use the transfer function to solve for the steady-state response for h1 if the inflow
rate qmi is a unit-step function, and estimate how long it will take to reach steady
state. Is it possible for liquid heights to oscillate in the step response?
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Two Connected Tanks

a. Note that ĥ1 = h̄1 + h1 , ĥ2 = h̄2 + h2 , and q̂mi = q̄mi + qmi . Assume that
h1 > h2 . From the conservation of mass applied to tank 1, we obtain

ρA1
dĥ1

dt
= ρA1

d(h1 + h̄1)

dt
= ρA1

dh1

dt
= −q̂1mo = −(q1mo + q̄1mo)

From physical reasoning we can see that the two heights must be equal at
equilibrium, and thus q̄1mo = 0. Therefore

ρA1
dh1

dt
= −q1mo

Because R1 is a linearized resistance,

q1mo =
ρg

R1
(h1 − h2) at the equilibrium point h̄1 = h̄2

Finally, we have

dh1

dt
= −

g

R1A1
(h1 − h2)
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Two Connected Tanks

Similarly for tank 2,

d(ρA2ĥ2)

dt
=

d
[
ρA2(h2 + h̄2)

]
dt

= ρA2
dh2

dt

conservation of mass gives

ρA2
dh2

dt
= q̂mi + q̂1mo − q̂2mo = (qmi + q̄mi) + (q1mo + q̄1mo)− (q2mo + q̄2mo)

Recalling that q̄1mo = 0, we note that this implies that q̄mi = q̄2mo , and thus

ρA2
dh2

dt
= qmi + q1mo − q2mo

Because the resistances are linearized, we have

ρA2
dh2

dt
= qmi +

ρg

R1
(h1 − h2)−

ρg

R2
h2 =⇒ A2

dh2

dt
=

1

ρ
qmi +

g

R1
(h1 − h2)−

g

R2
h2

The model consists of equations of tank 1 and tank 2. 28 / 32



Two Connected Tanks

Using C1 = A1/g and C2 = A2/g, we have

dh1

dt
= −

1

R1C1
(h1 − h2)

dh2

dt
=

1

ρgC2
qmi +

1

R1C2
(h1 − h2)−

1

R2C2
h2

b. Substituting R1 = R2 = R, A1 = A, and A2 = 3A into the differential equations
and dividing by A, and letting B = 1/RC

(
1

R1C1
= 1

RC
and 1

R2C2
= 1

3RC

)
, we

obtain

dh1

dt
= −B(h1 − h2)

dh2

dt
=

1

3ρgC
qmi +

B

3
(h1 − h2)−

B

3
h2
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Two Connected Tanks

Taking the Laplace transform and assuming zero initial conditions, we have

H1(s) =
B

(s+B)
H2(s) =

1
1
B
s+ 1

H2(s)

H2(s) =
B/3

(s+ 2B/3)
H1(s) +

1/(3ρgC)

(s+ 2B/3)
Qmi(s)

=
1/2

3
2B

s+ 1
H1(s) +

R/(2ρg)
3
2B

s+ 1
Qmi(s)

Then

H1(s) =
1

1
B
s+ 1

(
1/2

3
2B

s+ 1
H1(s) +

R/(2ρg)
3
2B

s+ 1
Qmi(s)

)
H1(s)

Qmi(s)
=

RB2/3ρg

s2 + 5B
3
s+ B2

3
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Two Connected Tanks

c. The characteristic equation is s2 + 5
3
Bs+ 1

3
B2 = 0 and has the two real roots

s =
−5/3±

√
13/9

2
B = −1.43B,−0.232B

Thus the system is stable, and there will be a constant steady-state response to a step
input. The step response cannot oscillate because both roots are real. The
steady-state height can be obtained by applying the final value theorem as below:

h1ss = lim
s→0

sH1(s) = lim
s→0

s
RB2/3ρg

s2 + 5
3
Bs+ 1

3
B2

1

s
=

R

ρg
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