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Thermal system

A thermal system
• is one in which energy is stored and transferred as thermal energy commonly
called heat.

• The thermal systems include heating and cooling systems in buildings and
mixing processes where heat must be added or removed to maintain an optimal
reaction temperature.

• Thermal systems operate because of temperature differences, as heat energy
flows from an object with the higher temperature to an object with the lower
temperature.

• Conservation of heat energy forms the basis of thermal system models, along
with the concepts of thermal resistance and thermal capacitance.

• For a system with well-defined boundaries, the law of conservation of energy
states

∆E = Q−W,

where ∆E is the change in energy of the system, Q is the heat flow into or out
of the system, andW is the work done by or on the system.
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Thermal system

• Q is positive if heat is supplied to the system and negative if heat is given off by
the system. W is positive if work is done by the system and negative if work is
done to the system. We have

∆E = (Qin −Qout)− (Wout −Win),

where Qin, Qout,Win , andWout are all positive quantities.
• The net amount of energy added to the system is equal to the net increase in
the energy stored internally in the system and any change in the mechanical
energy of the system’s center of mass,

∆E = ∆U +∆MEC ,

where U is the internal energy (or internal thermal energy), which is the energy
stored at the molecular level. It includes the kinetic energy due to the motion of
molecules and the potential energy that holds the atoms together. MEC

stands for the mechanical energy, which includes the kinetic energy and the
potential energy associated with the system’s mass center.

• For systems with negligible change in mechanical energy,

∆U = Q−W = (Qin −Qout)− (Wout −Win)
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Thermal system

• Heat Q is the energy transfer at the molecular level. WorkW is the energy
transfer that is capable of producing macroscopic mechanical motion of tye
system’s mass center. For the thermal systems with pure heat transfer and no
work involved, that is,Win = Wout = 0, the law of conservation of energy
presented the previous equatin can be rewritten as

∆U = Q = Qin −Qout

or

dU

dt
= qhi − qho,

where qh = dQ/dt is the heat flow rate having units of J/s, which is a watt of
ft·lb/s.
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Thermal Capacitance

Thermal capacitance relates an object’s temperature to the amount of heat energy
stored. It is defined as the ratio of the change in heat flow to the change in the
object’s temperature,

C =
dQ

dT
,

where Q is the stored heat energy, C has units of J/K, J/◦C.

For a constant-volume process, no work is involved and all the heat goes into the
internal energy of the substance,

Q = ∆U = mcv∆T,

wherem is the mass of the substance, cv is the constant-volume specific heat
capacity of the substance in units of J/K, J/◦C, and ∆T is the change in the
temperature of the substance.
For the constant-pressure process,

Q = ∆H = mcp∆T,

where H is the enthalpy and cp is the constant-pressure specific heat capacity. 5



Thermal Capacitance

We have

C = mcv and mcp = ρV cp,

where ρ and V are the density and the volume of the massm.

Concept of thermal capacitance applies to fluids as well as solids. For example, at
room temperature and atmospheric pressure, the ratio of the specific heat of water to
that of air is 4.16. Thus for the same mass of air and water, to raise the water
temperature by 1◦ requires 4.16 times more energy than for air.
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Temperature Dynamics of a Mixing Process

Liquid at a temperature Ti is pumped into
a mixing tank at a constant volume flow
rate qv . The container walls are perfectly
insulated so that no heat escapes through
them. The container volume is V , and the
liquid within is well mixed so that its
temperature throughout is T . The liquid’s
specific heat and mass density are cp and
ρ. Develop a model for the temperature T
as a function of time, with Ti as the input.

The amount of heat energy in the tank liquid is Q = ρcpV (T − Tr), where Tr is an
arbitrarily selected reference temperature. From conservation of energy,

d [ρcpV (T − Tr)]

dt
= heat rate in - heat rate out

The mass is flowing into the tank at the rate ṁ = ρqv . Thus heat energy is flowing into
the tank at the rate

heat rate in = ṁcp(Ti − Tr) = ρqvcp(Ti − Tr)
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Temperature Dynamics of a Mixing Process

Similarly,

heat rate out = ρqvcp(T − Tr)

Therefore, since ρ, cp, V , and Tr are constants,

ρcpV
dT

dt
= ρqvcp(Ti − Tr)− ρqvcp(T − Tr) = ρqvcp(Ti − T )

V
dT

dt
= qv(Ti − T )

dT

dt
+

qv

V
T =

qv

V
Ti

Note that Tr, ρ, and cp do not appear in the final model form, so their specific
numerical values are irrelevant to the problem. The time constant is V/qv , and thus
the liquid temperature T changes slowly if the tank volume V is large or if the inflow
rate qv is small.
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Thermal Resistance

The heat energy is conserved:
• the heat in thermal system analysis plays the same role as charge in electrical
systems. The flow of heat, called heat transfer, causes a change in an object’s
temperature.

• Heat transfer between two objects is caused by a difference in their
temperatures.

• Thus temperature difference in thermal systems plays the same role as voltage
difference in electrical systems.

• We utilize the concept of thermal resistance in a manner similar to electrical
resistance.

• Heat transfer can occur by one or more modes: conduction, convection, and
radiation.
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Newton’s Law of Cooling

Newton’s law of cooling is a linear model for heat flow rate as a function of
temperature difference. The law, which is used for both convection and conduction
models, is expressed as

qh =
1

R
∆T,

where qh is the heat flow rate, R is the thermal resistance, and ∆T is the temperature
difference. In SI, qh has the units of J/s, which is a watt (W).

For conduction through material of thickness L, and approximate formula for the
conductive resistance is

R =
L

kA
=⇒ qh =

kA

L
∆T,

where k is the thermal conductivity of the material and A is the surface area.
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Newton’s Law of Cooling

For the convection, we might need to analyze the system as a fluid as well as a
thermal system. The thermal resistance for convection occurring at the boundary of a
fluid and a solid is given by

R =
1

hA
=⇒ qh = hA∆T,

where h is the so-called film coefficient or convection coefficient of the fluid-solid
interface and A is the involved surface area. The film coefficient might be a
complicated function of the fluid flow characteristics.
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Heat Transfer Through a Plate

If T1 > T2 , heat will flow from the left side to the right side. The temperatures T1 and
T2 of the adjacent objects will remain constant if the objects are large enough. Under
the transient conditions the temperature profile is not linear and must be obtained by
solving a partial differential equation. 12



Heat Transfer Through a Plate

Under steady-state conditions, the average temperature is at the center, and we can
select as the center temperature to be the representative temperature for the
transient calculations. The massm of the plate is assumed to be lumped at the plate
centerline, and consider conductive heat transfer to occur over a path of length L/2
between temperature T1 and temperature T and L/2 between temperature T and
temperature T2 . Thus, the thermal resistance for each path is

R1 =
L/2

kA
, R2 =

L/2

kA

We can derive the thermal model by applying conservation of heat energy. Assuming
that T1 > T > T2 , we obtain

mcp
dT

dt
= q1 − q2 =

1

R1
(T1 − T )−

1

R2
(T − T2)

The thermal capacitance is C = mcp .

This system is analogous to the circuit in Figure (c), where the voltages v, v1 , and v2
are analogous to the temperatures T, T1 and T2 .
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Series Thermal Resistances

If the plate massm is very small, its thermal capacitance C = mcp is also very small.
In this case, the mass absorbs a negligible amount of heat energy, so the heat flow
rate q1 through the left-hand conductive path must equal the rate q2 though the
right-hand path. That is, if C = 0,

q1 =
1

R1
(T1 − T ) = q2 =

1

R2
(T − T2)

T =
R2T1 +R1T2

R1 +R2

q1 = q2 =
T1 − T2

R1 +R2
=

T1 − T2

R
=⇒ R = R1 +R2

Thus thermal resistances are in series if they pass the same heat flow rate.
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Thermal Resistance of Building Wall

The resistances for a wall area of 1 m2 are R1 = 0.036, R2 = 4.01, R3 = 0.408, and
R4 = 0.038 ◦C/W. Suppose that Ti = 20◦C and T0 = −10◦C. (a) Compute the total
wall resistance for 1 m2 of wall area, and compute the heat loss rate if the wall’s area
is 3 m by 5 m. (b) Find the temperatures T1 , T2 and T3 assuming steady-state
conditions.
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Thermal Resistance of Building Wall

a. The series resistance law gives

R = R1 +R2 +R3 +R4 = 0.036 + 4.01 + 0.408 + 0.038 = 4.492◦C/W

which is the total resistance for 1 m2 of wall area. The wall area is 3(5) = 15m2 ,
and thus the total heat loss is

qh = 15
1

R
(Ti − T0) = 15

1

4.492
(20 + 10) = 100.2W

This is the heat rate that must be supplied by the building’s heating system to
maintain the inside temperature at 20◦C, if the outside temperature is −10◦C.

b. Applying conservation of energy gives the following equations:

qh =
1

R1
(Ti − T1) =

1

R2
(T1 − T2) =

1

R3
(T2 − T3) =

1

R4
(T3 − T0)
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Thermal Resistance of Building Wall

Then,

(R1 +R2)T1 −R1T2 = R2Ti

R3T1 − (R2 +R3)T2 +R2T3 = 0

−R4T2 + (R3 +R4)T3 = R3T0

For the given values of Ti and T0 , the solution to these equations is T1 = 19.7596,
T2 = −7.0214, and T3 = −9.7462◦C.
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Parallel Resistances

A certain wall section is composed of a 15 cm by 15 cm glass block 8 cm thick.
Surrounding the block is a 50 cm brick section, which is also 8 cm thick. The thermal
conductivity of the glass is k = 0.81 W/m·◦C. For the brick, k = 0.45 W/m·◦C. (a)
Determine the thermal resistance of the wall section. (b) Compute the heat flow rate
through (1) the glass (2) the brick, and (3) the wall if the temperature difference across
the wall is 30◦C.

The resistance

R =
L

kA

R1 =
0.08

0.81(0.15)2
= 4.39

R2 =
0.08

0.45[(0.5)2 − (0.15)2]
= 0.781

The resistances are in parallel,

1

R
=

1

R1
+

1

R2
= 0.228 + 1.28 = 1.51

or R = 0.633◦C/W.
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Parallel Resistances

The heat flow through the glass is

q1 =
1

R1
∆T =

1

4.39
30 = 6.83 W

The heat flow through the brick is

q2 =
1

R2
∆T =

1

0.781
30 = 38.4 W

Thus the total heat flow through the wall section is

qh = q1 + q2 = 45.2 W

This rate could also have been calculated from the total resistance as followed

qh =
1

R
∆T =

1

0.663
30 = 45.2 WL
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Radial Conductive Resistances

Consider a cylindrical tube whose inner and outer radii are ri and ro . Heat flow in the
tube wall can occur in the axial direction along the length of the tube and in the radial
direction. If the tube surface is insulated, there will be no radial heat flow, and the
heat flow in the axial direction is given by

qh =
kA

L
∆T,

where L is the length of the tube, ∆T is the temperature difference between the ends
a distance L apart, and A is area of the solid cross section. If only the ends of the
tube are insulated, then the heat flow will be entirely radial. Derive and expression for
the conductive resistance in the radial direction.
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Radial Conductive Resistances

From the figure (b) the inner and outer temperatures are Ti and To , and are assumed
to be constant along the length L of the tube. From the Fourier’s law, the heat flow
rate per unit area through an element of thickness dr is proportional to the negative
of the temperature gradient dT/dr.

qh

2πrL
= −k

dT

dr
⇒ qh = −2πkLr

dT

dr∫ ro

ri

qh

r
dr = −2πLk

∫ To

Ti

dT

Because qh is constant, the integration yields

qh ln
ro

ri
= −2πLk(To − Ti) or qh =

2πLk

ln(ro/ri)
(Ti − To)

The radial resistance is thus given by

R =
ln(ro/ri)

2πLk
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Dynamic Models of Thermal Systems



Heat Transfer Systems

Heat transfer occurs between two objects. To obtain an ordinary differential equation
model of the temperature dynamics of an object, we must be able to assign a single
temperature that is representative of the object.

The BIOT Criterion For solid bodies immersed in a fluid, a useful criterion for
determiing the validity of the uniform-temperature assumption is based on the Biot
number, defined as

NB =
hL

k

where L is a representative dimension of the object, which is usually taken to be the
ratio of the volume to the surface area of the body. For example a cube L = d3/6d2 . If
NB < 0.1, the temperature is taken to be uniform (The object can treat as a
lumped-parameter system with a single uniform temperature, denoted T ).
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Quenching with Constant Bath Temperature

Consider a lead cube with a side length of
d = 20 mm. The cube is immersed in an oil
bath for which h = 200 W/(m2·◦C), The oil
temperature is Tb . Develop a model of the
cube’s temperature as a functin of the
liquid temperature Tb , which is assumed to
be known. (k for lead is 34 W/m·◦C and the
density of lead is 1.134× 104 kg/m3)

Here L = d3/6d2 = 0.02/6, and NB = 200(0.02)/34(6) = 0.02. We can treat the cube
as a lumped-parameter system with a single uniform temperature, denoted T . If
T > Tb , from the conservation of energy we obtain

C
dT

dt
= −

1

R
(T − Tb)

C = mcp = ρV cp = 1.134× 104(0.02)3(129) = 11.7 J/◦C

The thermal resistance R is due to convection R = 1/hA = 1/200(0.02)2 = 2.08◦·s/J,
and is

11.7
dT

dt
= −

1

2.08
(T − Tb) ⇒ 24.4

dT

dt
+ T = Tb

Note The time constant is τ = RC = 24.4 s. 23



Quenching with Variable Bath Temperature

The temperature outside the bath is To ,
which is assumed to be known. The
convective resistance between the cube
and the bath is R1 , and the combined
convective/conductive resistance of the
container wall and the liquid surface is R2 .
The capacitances of the cube and the
liquid bath are C and Cb , respectively.

1. Derive a model of the cube temperature and the bath temperature assuming
that the bath loses no heat to the surroundings (that is, R2 = ∞).

2. Obtain the model’s characteristic roots and the form of the response.
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Quenching with Variable Bath Temperature

(1) Assume that T > tb . Then the heat flow is out of the cube and into the bath. From
conservation of energy for the cube.

C
dT

dt
= −

1

R1
(T − Tb)

and for the bath

Cb
dTb

dt
=

1

R1
(T − Tb)

The heat flow rate in the lower equation must have a sign opposite to that in the
above equation because the heat flow out of the cube must be the same as the heat
flow into the bath.
(2) Appliying th eLaplace transform to equations with zero initial conditions, we obtain

(R1Cs+ 1)T (s)− Tb(s) = 0

(R1Cbs+ 1)Tb(s)− T (s) = 0
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Quenching with Variable Bath Temperature

We have

[(R1Cbs+ 1)(R1Cs+ 1)− 1]T (s) = 0

from which we obtain

R2
1CbCs2 +R1(C + Cb)s = 0

s(R2
1CbCs+R1(C + Cb)) = 0

The form of the response is T (t) = A1e−λ1t +B1e−λ2t , then

T (t) = A1 +B1e
−t/τ and Tb(t) = A2 +B2e

−t/τ

and

τ =
1

λ2
=

R1CCb

C + Cb

where the constants A1 , A2 , B1 depend on the initial conditions. The two
temperatures become constant after approximately 4τ . Note that T (t) → A1 and
Tb(t) → A2 as t → ∞. From physical insight we know that T and Tb will become
equal as t → ∞ . Therefore, A2 = A1 . 26
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