iNIC

AUTOMATION FOR ALL

Lecture 8: Transfer Function of Mechanical
Systems

Dr-Ing. Sudchai Boonto, Assistant Professor

Department of Control System and Instrument Engineering, KMUTT

May 1, 2025



Transfer function: Translational Mechanical System

Component Force-velocity Force-disp Impedance
Zn(s) = f(((z))
b a(t) ,
%—«/kw—/m Ft) = k/o w(F)dr () = ka(t) k
Spring
= =(t)
o () = cu(t) f(t) = ci(t) cs

Viscous damper

Guide [
Body =a = .
(a)

Mass

f(t) = Mo(t) f(t) = Mi Ms?

2/30



Transfer function: Translational Mechanical System

Assuming that there are no friction between a mass and ground.
= z(t) b (1)

ka(t) -a—
b M = f(t) M | f(t)
[ — cir(t) —]

From the Newton's law X F = ma, we have
Mi(t) + cx(t) + kx(t) = f(t)

Taking the Laplace transform of above equation and setting all initial conditions to be
zero, we obtain

Ms2X(s) + esX(s) + kX(s) = F(s)
X(s) B 1
F(s) Ms2+cs+k
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Transfer function: Translational Mechanical System

The point of motion in a system can still move if all other points of motion are held
still. The name for the number of the linearly independent motions i sthe number of
the degrees of freedom.

o z1(t) = x2(t) kaao(t)
f(t) — k2
k1 —VWW—] k3 c3da(t)
M s | Ms
[F
A o A J (k2 + k3)z2(t) kox1(t)
1/ ;[ (c2 + c3)@2(t) 3 (t)

]\4158'1@) —+ (Cl + C3)i1 (t) — CgiQ(t) + (k1 + kg):rl(t) — koxo = f(t)
Moo (t) + (C2 + Cg)iQ(t) — c3T1 (t) + (kz —+ k‘g)l’Q(t) — kox1 =0
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Transfer function: Translational Mechanical System

Taking the Laplace transform of both equations, we get

(M182 + (Cl + 63)8 + (kl =+ kg)) X1 (s) — (038 + kz)Xz(s) = F(S)
—(c3s + k2)X1(s) + (]WQSZ + (ca + c3)s + (ka2 + kg)) Xa(s) =0

Rearranging the equations into matrix form:

Mi52% + (c1 4 c3)s + (k1 + ko) —(c3s + k2) Xi(s) F(s)
—(c3s + k) Mas? + (c2 + c3)s + (k2 + k3) | | Xa(s) 0
XQ(S) _c3s + ko
F(s) A
where
M1s? + (c1 +c3)s + (k1 + k2) —(c35 + k)
A=
—(c3s + ko) Mas? + (ca + c3)s + (k2 + k3)
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Transfer function: Translational Mechanical System

= z3(t)
(k1 + k2)x1 (t) - = koxa(t)
M M
P ¥ (c1 + ca)in () Lo bais(t)
. = c3d1(t)
k1 ko (c3 + ca)23(t) ~--— Ms .
My —ANW— My | £(t) [ cada(t)
koxo(t) - = Fox (t)
oS oS My (—m=cai3(t)
J b a1 (1) ] b a2 (t) (c2 + ca)do(t) <a— ()
1 2y

The equations of motion are

]\41:'151(1‘/) —+ (Cl + Cg)il(t) =+ (k1 + k‘g)xl(t) — kzxg(t) — ng'g(t) =0
Moo (t) + (c2 + ca)da(t) + kowa(t) — kox1(t) — cadz(t) = f(t)
M3i3(t) + (c3 + ca)da(t) — cat1(t) — caza(t) =0
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Transfer function: Translational Mechanical System

Taking the Laplace transform to all equations, we have

(M182 + (Cl + 03)3 + (kl + kg)) X1 (S) — kQXQ(S) — CgSXg(S) =0
—kQXl(S) + (]\/[282 + (02 + 64)8 + k‘g) X2 (S) — C4SX3(S) = F(S)
—c35X1(s) — casXa(s) + (M3s® + (c3 +ca)s) X3(s) =0

and in matrix from

Mis% + (c1 +c3)s + (k1 + k2) —ko —c3s
Xi1(s)
—ko Moys? + (2 + ca)s+ k2 —c48 Xo(s)
X3(s)
—c38 —cy48 M3s? + (c3 +cq)s

Note: the matrix is symmetry.
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Transfer function:

Rotational Mechanical System

Component Torque-angular Torque-angular Impedance
velocity displacement  Zas(s) = T'(s)/O(s)
7(t) 0(t)
% T(t) = k/otl w(t)dt  T(t) = k6(t) k
Spring
(1) 0(t)
T(t) = bw(t) T(t) = cl(t) cs
Viscous damper
J T(t) 0(t)
T(t) = Ju(t) T(t) = Jb Js?
Inertia
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Transfer function: Rotational Mechanical System

T(t) 0y (t

Bearing Bearing
c1 €2

01 (t)

clwl(t)
The equations of motion are

T(t \
(‘i@/‘ KOO = 020) T(t) — c161 () — k(O1(t) — 02(1)) = J161

7k(92 (t) — 01 (t)) — Czég(t) = Jzéz
b2()

Taking the Laplace transform, we have
CQUJQ(t

(.]182 +c1s+ k) O1(s) — kO2(s) = T(s)
j 92 — 91 ) (J252 + cos + k) @2(8) — k@l(s) =0

HeCEak-a01H
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Transfer function: Rotational Mechanical System

01 (t t Qg(t) Qg(t)
HAlapp ey RyaY s

The equations of motion are

T(t) — c101(t) — k (01(t) — 02(t)) = J10,
—k(O2(8) = 61(1) — 2 (02— 03) = ol
—c2 (93 - 92) — c303 = J303
Taking the Laplace transform, we have
(J15% + c15 + k) ©1(s) — kO2(s) = T'(s)

—kO1(s) + (J25% + cas + k) O2(s) — c2503(s) =0
—c2802(s) + (J35 + (c2 + ¢3)s) O3(s) =0
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Transfer function: Rotational Mechanical System

In matrix from

(J1s% + c1s + k) —k 0 O1(s)
—k (J282 + cos + k) —ca25s O2(s)
0 —c28 (J332 + (c2 + C3)s) O3(s)
T(s)
= 0

0
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Transfer Functions for Systems with Gears

» Gears provide mechanical advantage to rotational system, e.g. a bicycle with
gears.

» Gears are nonlinear. They exhibit backlash, which occurs from the loose fit
between two meshed gears.

» In this course, we consider only the linearized version of gears.

A gear system » asmall gear has radius 1 and
N7 teeth is rotated through
No angle 61 (t) due to a torque,
Ti(t) 0,() Ny 02(t) Ta(t) T (2).
» a big gear have radius ry and
#7 N> teeth responds by rotating

through angle 62 (¢) and
delivering a torque, Tx (¢).
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Transfer Functions for Systems with Gears

» The gears turn, the distance traveled along each gear’s circumference is the

same. Thus
r101 = 1202
or
bo _m _ M
61 o No

> |f the gears are lossless, that is they do not absorb or store energy, the energy
into Gear 1 equals the energy out of Gear 2. Since the translational energy of
force times displacement becomes the rotational energy of torque time angular
displacement.

T1601 = T>05
or
T, 6 Ny
L 0 N
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Transfer Functions for Systems with Gears

N1 N2

0 ———» — —»0 TN — — —»T)
N2 Nl
(a) (b)

» (a)is a transfer functions for angular displacement in lossless gears
» (b)is a transfer functions for torque in lossless gears.
T1(t) 01(t) N The first gear (lossless) generates torque (7% )
! to drive the second gear by 7%, then

(Js? + cs + k) Oa(s) = Ta(s)

T, Na 61
L N 62
T2(t), IN: N N:
2(t), N2 (J52 +cs+ k) F;GI(S) = F?T1(s)
To — kO — cly = Jb Ny 2 Ny 2 Ny 2
A.Q ,2 ’ ? J<—1> s2+c(—1> s+k(—1> O1(s) =T (s)
JO2 + cO2 + kb = 2 No Na N
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Transfer Functions for Systems with Gears
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Transfer Functions for Systems with Gears

T1(t) 01(t)

Find the transfer function, ©2(s)/T1(s). Assuming that T, (t) is the torque generates
at the first gear by the torque 71 (t), the we have

(.]152 +c15) ©1(s) = Ti(s) — Te(s)

(J15% + c13) %@2(3) + Te(s) = T (s)

16 /30



Transfer Functions for Systems with Gears

At the second gear, we have
(J252 + cos + kg) Oa(s) = Txr(s)
(.]252 +cos+ k2) O2(s) = %Tﬁ(s)
(J252 + cos + kg) %@2(3) =Te(s)

Combining the equations of both gears, we have
N2\ o No Ni\ o <N1) <N1>}
5= = Jo [ — —- ko (= )| ©2(s) =T
{1<N1>s +01<Nl>s+ 2<N2>S +co ~ 5+ ko ~ 2(s) 1(s)
2 2
|:<J1 <%) + J2> 5%+ (q (%) +c2> s+ k2

O2(s) N2 /Ny

Ti(s) [<J1 <%—f)2 + J2> 52 4+ (01 (%)2 +62) s+ k2:|

% O2(s) =Ti(s)
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Transfer Functions - Gears with Loss

Ny
No N3
Ja, ca E—E J3
Ny

i
D

Starting from the left most of the gear, we can find the transfer function ©1(s)/T1(s)
as follow:

(J1s2 + cls) O1(8) + Te1(s) = T1(s)
[(Jz -+ Jg) 82 -+ CQS] @2(3) -+ Teg(s) = TQ(S)
[(Ja+ J5) 5°] ©a(s) = Tu(s)

Transform all torques and angle to be in terms of T1(s) and ©1(s) respectively.
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Transfer Functions - Gears with Loss

[(Ja +J5) 5] 120a() = 1 Teas)

Substituting Te2(s) to one above equation, we have

2
|:(J2 +J3) 8%+ (Ja + J5) <%> 52 4+ cas| Oa(s) = Tu(s)

4

N Ny
oi(s) = 2T,
N, O1(8) = g Tea(®)

N\ 2
(Jo + J3) 8% + (Js + J5) <N3> 52 4 cas
4

Substituting Te1(s) to one above equation, we have

{<J1+(J2+J3) (JNV;>2+(J4+J5) (%;xiy) P

+ <C1 +c2 <Z;>2> s
O1(s) 1

|:<J1 (o Js) () () (%%ﬁ)v s* + (Cl +ez (%)2> 3}
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Electromechanical System Transfer Functions

An electromechanical systems is a hybrid system of electrical and mechanical
variables. This system has a lot of application for examples

» an antenna azimuth position control system

v

robot and robot arm controls

v

sun and star trackers

v

disk-drive position controls

Industrial robot arm
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Electromechanical System Transfer Functions: DC Motor

Cutaway view of a permannet magnet motor.
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Electromechanical System Transfer Functions: DC Motor

Fixed
R, L, field
00

Tm (t) 97n(t)

i
eu(t)CD ia(t) wp(t) = Kpb @e%:,r)

Rotor

Armature circuit

> up(t) = K
emf); Ky is a constant of proportionality called the back emf constant.

A0, (t . ) .
1,217;() = Ky0m, where vy, (t) is the back electromotive force (back

> The relationship between the armature current, i, (t) , the applied armature
voltage, eq (), and the back emf, vy (%) is

dig(t)
dt

Raia(t) + La—=— + Kyfm(t) = ea(t)

(Ra + Las) Ia(s) + KpsOm(s) = Eq(s)
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Electromechanical System Transfer Functions: DC Motor

» The torque developed by the motor is proportional to the armature current; thus
Tm(t) = Kiia(t) = Tm(s) = Kila(s)

where T}, (t) is the torque developed by the motor, and K is a constant for
proportionality, called the motor torque constant.

> Taking the Laplace transform of both relationship and substituting I, (s) into
the mesh equation, we have (Q,(s) = s, (s))

(Ra + Las)Tm(s)

X, + KpsOm(s) = FEa(s)

The figure shows a typical equivalent
mechanical loading on a motor. We

Com have
T .

T () = Jm(t) + cmb(t)
Tm(s) = (Jm52 + Cm5) em(s)

Tm (t) Om (t)
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Electromechanical System Transfer Functions: DC Motor

Substituting 75, (s) into the armature equation yields

(Ra, + La,5) (Jm32 + CmS) @m(s)
Ky

+ KpsOm(s) = Ea(s)

The transfer function from eq (t) to 6., (¢) is

|:R(l + Las

X, (Jms +cm) + Kb:| $Om(s) = Ea(s)

If we assume that the armature inductance L, is small compared to the armature
resistance, R,, the equation become

[% (Jms + cm) + Kb} $Om(s) = Ea(s)

After simplification, the desired transfer function is

Om(s) Ky Ki/(RaJm)

Ba(5)  Ra(Jms+cm) + KoKi [SJF%M (Cm+ K;?Kb)]

La
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Electromechanical System Transfer Functions

TnL(t) eﬂi(t)

Tl(t),Pvl
Motor

0r(t)

—O@o—E

NQ,TQ(t)H \/ =

A motor with inertia J, and damping ¢, at the armature driving a load consisting of

inertia Jr, and damping cy,. Assuming that Jg, Jr,, ca, and ¢y, are known. Then, we
have

(Jas2 + cas) Om(s) = Tm(s) — T1(s)
At the load side, we obtain

(JL32 +cLs) Or(s) =Ta(s)

N-
(JL52 + cLs) ®m(9) = FjTl( s)
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Electromechanical System Transfer Functions

Substituting the T4 (s) back to the motor side equation, the equivalent equation is

2 2
oo () fon ()

Or the equivalent inertial, J,,,, and the equivalent damping, ¢, at the armature are

N1\ 2 N1\ 2
et (5) 5 emmara ()

Om(s) = Tm(s)

Next step, we going to find the electrical constants by using a dynamometer test of
motor. This can be done by measuring the torque and speed of a motor under the
condition of a constant applied voltage. Substituting Vi (s) = KpsOm, (s) and

Tm(s) = K¢la(s) in to the Laplace transformed armature circuit, with L, = 0, yields

%Tm(s) + K5O (s) = Eals)
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Electromechanical System Transfer Functions

Taking the inverse Laplace transform, we get

%Tm () + Ky (t) = ea(t)

If eq(t) is @ DC voltage, at the steady state, the motor should turn a a constant speed,
wm, With a constant torque, T),. With this, we have

R KKy Ky
?(:Tm + wam = €q = Ty = — R, Wm + R—aea
Toraue-peed curve > w.,, =0, the value of torque is
T que-p called the stall torque, Ty, Thus
A
Ky Ky Tya
Tl = R0 = Ry = e
Tstall ¢ @ @ @
» T, =0, the angular velocity
a1 becomes no-load speed, wpo-jpad-
Casy Thus
) €a €a
'm W =2 S K =
Wno-load no-load Ky b Who-load
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Transfer Function-DC Motor and Load

Fixed
Ra field

Tm
Om () Ty (t), Ny = 100

+ ’\
3 + i 1 5
mm(D ia(t) CM)D/ o o onmerm i

- E/‘ eq = 100V
JrL
s Q) L
Ja = 5kg-m Na = 1000, Tz ()& Jr, = 700 kg-m
ca =2 N-ms/rad wm
50 rad/s

Find ©1(s)/Ea(s) from the given system and torque-speed curve. The total inertia
and the total damping at the armature of the motor are

Iy = Ju 4 (2 2—5+700 L 2—12
m — Ja L No = 10 =

Cm =Cq + ¢ & 2—2+800 i 2—10
m a L NQ 10
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Transfer Function-DC Motor and Load

Next, we find the electrical constants K;/Rq and K} from the torque-speed curve.

Hence,
&_Tstall_@_'{)
R eq 100
and
1
Ky = o 100,
Who-load 50
We have
@m(s) o Kt/(RaJ'm) o 0417
N 1 KK - '
Eq.(s) s {S—l- 1 (Cm 4 B b)} s(s+1.667)
Im Rq

Using the gear ratio, N1 /N2 = 0.1

Or(s)  0.0417
Ea(s)  s(s4+ 1.667)
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