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Basic Mechanical Elements: Inertia,
Stiffness, Damping, and Forcing



Inertia Elements

▶ For Rigid bodies, inertia properties can be considered point like; therefore,
inertia features corresponding to either translatory or rotary motion are
naturally lumped.

▶ Inertia is represented by mass (usually denoted bym) is translatory motion (a)
and mechanical (mass) moment of inertia (generally symbolized by J) is rotary
motion (b).
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Inertia Elements

▶ The inertia (mass) is defined as the change in force (torque) required to make a
unit change in acceleration (angular acceleration).

inertia (mass) = change in force
change in acceleration

N
m/s2

or kg

inertia (moment of inertia) = change in torque
change in angular acceleration

N-m
rad/s2

or kg-m2
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Mechanical moment of inertia

The mechanical moment of inertia of a body of massm rotating about and axis is
defined by

J =

∫
m

r2dm,

where r is the distance from the reference axis to the mass element dm.

θ l J = ml2

If the rotation axis of a homogeneous rigid body does not coincide with the body’s
axis of symmetry, but is parallel to it at a distance d, then the mass moment of inertia
about the rotation axis is given by the parallel-axis theorem,

J∆ = J +md2,

where J is the mechanical moment of inertia of the body about its centroid axis.
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Mechanical moments of inertia of common elements

Sphere

G

R

JG =
2

5
mR2

Mass rotating about point o
o

m

θ l

Jo = ml2

Hollow cylinder

Jx =
1

2
m
(
R2 + r2

)
Jy = Jz =

1

12
m
(
3R2 + 3r2 + L2

)
for the proof of Jy see

http://dynref.engr.illinois.edu/rem.html

Rectangular prism

Jx =
1

12
m
(
b2 + c2

)
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Mechanical moments of inertia: Example

The moment of inertia of a thin rod (radian r of rod is very small compared to the
length of the rod.) with constant cross-section s and density ρ and with length l about
a perpendicular axis through its center of mass is determined by integration. Align the
x-axis with the rod and locate the origin its center of mass at the center of the rod.

Solution Here, x is a distance from the reference axis to the dm, dm = ρsdx, and
dV = sdx. Note: s = πr2 , where r ≈ 0.

J =

∫
m

x2dm = ρ

∫
V
x2dV

= ρs

∫ l/2

−l/2
x2dx

= ρs
x3

3

∣∣∣∣l/2
−l/2

=
ρs

3

(
l3

8
+

l3

8

)
=

1

12
ml2

s

dx

l

x

If the rotating axis is at the one end, the moment of inertia is J = ml2

3
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Mechanical moments of inertia: Example

x dx

2R1

h

2R22Rx r
Rx

dr

Calculate the mass moment of inertia about the centroidal (symmetry) axis of the
right circular cone frustum in Figure above in side view and defined by R1 , R2 and h.
Use the obtained result to also calculate the mass moment of inertia of a cylinder,
both about its centroidal axis and about a parallel axis that is offset at a distance
d = 2R2 from the centroidal axis. (the mass density is ρ)
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Mechanical moments of inertia: Example

Solution:
The mechanical moment of inertia is expressed as

J =

∫
r2dm =

∫
V
r2ρdV = ρ

∫ h

0

(∫
A
r2dA

)
dx

From the Figure above, the area of an elementary circular strip of width dr and inner
radius r is

dA = 2πrdr

The mass moment of inertia of the cone frustum becomes

J = 2πρ

∫ h

0

(∫ Rx

0
r3dr

)
dx =

πρ

2

∫ h

0
R4

xdx

The variable external radius, can be calculated as

Rx = R1 +
R2 −R1

h
x
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Mechanical moments of inertia: Example

Matlab code
1 syms R1 R2 h x rho r
2

3 Rx = R1 + ( R2 − R1 ) * x / h ;
4

5 J = (2* pi*rho* i n t ( i n t ( r ^3 , r , 0 , Rx ) , x , 0 , h ) )

This will return

J =
πρh

10

(
R4

1 +R3
1R2 +R2

1R
2
2 +R1R

3
2 +R4

2

)
When R1 = R2 = R, the cone frustum becomes a cylinder the result simplies to

J =
πρh

10

(
5R4

)
=

1

2
πρhR4 =

1

2
mR2
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Mechanical moments of inertia: Example

The cylinder’s mass moment of inertia about an axis situated at d = 2R2 from its
centroidal axis is found from the above equation by means of the parallel-axis
theorem as

J =
1

2
mR2 +m(2R)2 =

9

2
mR2
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Mechanical moments of inertia: Example

Calculate the moment of inertia about axis
xx′ of the hollow cylinder shown in Fig.

Solution: The moment of inertia about axis xx′ of the solid cylinder of radius R is

JR =
1

2
m1R

2, wherem1 = πR2Lρ

The moment of inertia about axis xx′ of the solid cylinder of radius r is

Jr =
1

2
m2r

2, wherem2 = πr2Lρ
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Mechanical moments of inertia: Example

Then the moment of inertia about axis xx′ of the hollow cylinder shown in Fig. is

J = JR − Jr =
1

2
m1R

2 −
1

2
m2r

2 =
1

2

[
(πR2Lρ)R2 − (πr2Lρ)r2

]
=

1

2
πLρ(R4 − r4) =

1

2
πLρ(R2 + r2)(R2 − r2)

The mass of the hollow cylinder is

m = π(R2 − r2)Lρ

Hence,

J =
1

2
(R2 + r2)π(R2 − r2)Lρ

=
1

2
m(R2 + r2)
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Translational Motion

Newton’s Laws
▶ A Particle is a mass of negligible dimensions. We can consider a body to be a

particle if its dimensions are irrelevant for specifying its position and the forces
acting on it. Ex. we don’t need to know the size of an satellite to describe its
orbital path.

▶ Newton’s first law states that a particle originally at rest, or moving in a straight
line with a constant speed, will remain that way as long as it is not acted upon
by an unbalanced external force.

▶ Newton’s second law states that the acceleration of a mass particle is
proportional to the vector resultant force acting on it and is in the direction of
this force.

ΣF = ma = m
dv

dt
= m

d2x

dt2
= mẍ

▶ Newton’s third law states that the forces of action and reaction between
interacting bodies are equal in magnitude, opposite in direction, and collinear.
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Mechanical Energy

The force f can be a function of displacement x,

m
dv

dt
= f(x)

m
dv

dt
vdt = f(x)vdt =⇒ mvdv = f(x)

dx

dt
dt = f(x)dx

Integrate both sides, we have

∫
mvdv =

mv2

2
=

∫
f(x)dx+ C

▶ Since work is force times displacement, the integral on the right represents the

total work done on the mass by the force f(x). The term mv2

2
is called kinetic

energy (KE)
▶ If the work done by f(x) is independent of the path and depends only on the

end points, the force f(x) is derivable from a function V (x) as follows:

f(x) = −
dV

dx

The negative sign provides the convention that work done against a force field. 13 / 48



Mechanical Energy

▶ The force f(x) is called conservative force. If we integrate both sides, we obtain

V (x) =

∫
dV = −

∫
f(x)dx

mv2

2
+ V (x) = C

This equation shows that V (x) has the same units as kinetic energy. V (x) is
called the potential energy (PE) function.

▶ The equation states that the sum of the kinetic and potential energies must be
constant, if no force other than the conservative force is applied.

▶ If v and x have the values v0 and x0 at the time t0 , then

mv20
2

+ V (x0) = C

Hence,

mv2

2
−

mv20
2

+ V (x)− V (x0) = 0
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Mechanical Energy

▶ The result is the conservative of energy as

∆KE+∆PE = 0,

where the change in kinetic energy is ∆KE =m(v2 − v20)/2 and the change in
potential energy is ∆PE = V (x)− V (x0) .

▶ Gravity is an example of a conservative force, for which f = −mg. The gravity
force is conservative because the work done lifting an object depends only on
the change in height and not on the path taken. If x represents vertical
displacement,

V (x) = mgx

mv2

2
+mgx = C

mv2

2
−

mv20
2

+mg(x− x0) = 0
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Speed of a Falling Object

An object with a mass ofm = 2 kg drops from a height of 30 m above the ground.
Determine its speed after it drops 20 m to a platform that is 10 m above the ground.

Solution: The distance from the ground is x0 = 30 m and x = 10 m at the platform.
Since v0 = 0, we have

m

2
(v2 − 0) +mg(10− 30) = 0 ⇒ v2 = 40g (g = 32.2 m/sec2)

We obtain v =
√
644 = 25.4 m/sec. This is the speed of the object when it reaches

the platform.
Note that if we had chosen to measure x from the platform instead of the ground,
then v0 = 0 m/s, x0 = 20 m, and x = 0 mat the platform. We have

m

2
(v2 − 0) +mg(0− 20) = 0 ⇒ v2 = 40g
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Non-conservative force

The dry friction force is non-conservative because the work done by the force depends
on the path taken. The dry friction force F is directly proportional to the force N

normal to the frictional surface. Thus F = µN . The proportionality constant is µ, the
coefficient of friction.

▶ The dry friction force that exists before motion begins is called static friction
(sometimes shortened to stiction). The static friction coefficient have the value
µs .

▶ The friction after motion begin is the dynamic friction. The dynamic friction
coefficient µd describes the friction after motion begins. The dynamic friction is
also called sliding friction, kinetic friction, or Coulomb friction.

▶ In general, µs > µd , which explains why it is more difficult to start an object
sliding than keep it moving.

▶ Normally µ is refer to µd .
▶ Coulomb friction cannot be derived from a potential energy function, the

conservation of mechanical energy principle does not apply.
▶ The friction force dissipates the energy as heat, and thus mechanical energy,

which consists of kinetic plus potential energy, is not conserved.
▶ The total energy is conserved.
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Motion with Friction

The free body diagrams above have two cases: v > 0 and v < 0. The normal force N

is the weightmg. Thus the friction force F is µN , or F = µmg. If v > 0, the equation
of motion is

mv̇ = f1 − µmg, v > 0

Dry friction always opposes the motion. For v < 0,

mv̇ = f1 + µmg, v < 0
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Motion with Friction on an Inclined Plane

For the massm = 2 kg, ϕ = 30◦ , v(0) = 3 m/s, and µ = 0.5. Determine whether the
mass comes to rest if (a) f1 = 50 N and (b) f1 = 5 N.

m

ϕ f1

v

mg

m

N

mg cosϕ

f1

F
mg sinϕ

Solution: Because the velocity is initially positive [v(0) = 3], we use equation

mv̇ = f1 −mg sinϕ− µmg cosϕ v > 0

2v̇ = f1 − 18.3

(a) f1 = 50 N and thus v̇ = (50− 18.3)/2 = 15.85 and the acceleration is positive.
Thus, because v(0) > 0, the speed is always positive for t ≥ 0 and the mass
never comes to rest.

(b) f1 = 5 N , v̇ = (5− 18.3)/2 = −6.65, and thus the mass is decelerating.
Because v(t) = −6.65t+ 3, the speed becomes zero at t = 3/6.65 = 0.45s.
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Rotation About a Fixed Axis: Pendulum

From ΣM = Jα, we have

mL2θ̈ = −mgL sin θ

Lθ̈ = −g sin θ

θ̈ = −
g

L
sin θ

If θ << 1, we have

θ̈ = −
g

L
θ

20 / 48



Rotation About a Fixed Axis: Example

The pendulum shown in Figure below consists of a concentrated massmC (the bob) a
distance LC from point O, attached to a rod of length LR and inertia JRG about its
mass center. (a) Obtain its equation of motion. (b) Discuss the case where the rod’s
massmR is small compared to the concentrate mass. (c) Determine the equation of
motion for small angles θ.

mC

LCLRL

G

O

θ
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Rotation About a Fixed Axis: Example

▶ The inertia of the concentrated massmC about point O is

Jm = mCL2
C

▶ From the parallel axis theorem, the rod’s inertia about point O is

JRO = JRG +mR

(
LR

2

)2

Thus the entire pendulum’s inertia about point O is

JO = JRO +mCL2
C = JRG +mR

(
LR

2

)2

+mCL2
C
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Rotation About a Fixed Axis: Example

mC

G

O

θ

mg sin θ

The moment equation is

ΣM = Jω̇

Then

JO θ̈ = −mgL sin θ

The distance L between point O and the mass center G of the entire pendulum is not
given, but can be calculated as

mgL = (mC)gLC + (mR)g
LR

2
wherem = mC +mR

Solve for L to obtain

L =
mCLC +mR(LR/2)

mC +mR
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Rotation About a Fixed Axis: Example

(b) IF we neglect the rod’s massmR compared to the concentrated massmC , then we
can takemR = JRG = 0,m = mC , L = LC and JO = mL2 . In this case, the
equation of motion reduced to

mL2θ̈ = −mgL sin θ

Lθ̈ + g sin θ = 0

(c) For small angles, sin θ ≈ θ if θ is in radians. Substituting this approximation into
above equation gives

θ̈ +
g

L
θ = 0
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Energy and Rotational Motion

The work done by a momentM causing a rotation through an angle θ is

W =

∫ θ

0
Mdθ

From, the dynamic equation

M = Jω̇ ⇒ Mωdt = J
dω

dt
ωdt

M
dθ

dt
dt = J

dω

dt
ωdt = Mdθ = Jωdω

Integrating both sides gives

∫ θ

0
Jωdω =

1

2
Jω2 =

∫ θ

0
Mdθ

It shows that the work done by the momentM produces the kinetic energy of rotation:

KE =
1

2
Jω2
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Rotation About a Fixed Axis: Example

A motor supplies a torque T to turn a
drum of radius R and inertial I about its
axis of rotation. The rotating drum lifts a
massm by means of a cable that wraps
around the drum. The drum’s speed is ω.
Discounting the mass of the cable, use the
valuesm = 40 kg, R = 0.2 m, and J = 0.8

kg· m2 . Find the acceleration v̇ if the
torque T = 300 N· m.

Use Jω̇ = M we have

0.8ω̇ = 300− 0.2F

40v̇ = F − 40(9.81)

Solve above equation for F and

0.8ω̇ = 300− 8v̇ − 8(9.81)

Note that v = Rω = 0.2ω to obtain v̇ = 0.2ω̇. Then we have v̇ = 18.46 m/s2 . 26 / 48



Pulley Dynamics

A pulley of inertial J whose center is fixed
to a support. Then we have

Jθ̈ = R(T1 − T2)
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Pulley Dynamics : Energy-based analysis

▶ If pulley inertial is negligible then it is obvious
thatm1 will liftm2 ifm1 > m2 . How does a
nonnegligible pulley inertial J change the result?

▶ If the pulley cable is inextensible, the x = y and
ẋ = ẏ. If the cable does not slip, then θ̇ = ẋ/R.

▶ If the system starts at rest at x = y = 0, then the
kinetic energy is initially zero. We take the
potential energy to be zero at x = y = 0.

Thus

KE+ PE =
1

2
m1ẋ

2 +
1

2
m2ẏ

2 +
1

2
Jθ̇2 +m2gy −m1gx = 0

Substituting y = x, ẏ = ẋ, and θ̇ = ẋ/R into the equation, then

1

2

(
m1 +m2 +

J

R2

)
ẋ2 + (m2 −m1)gx = 0, ẋ =

√
2(m1 −m2)gx

m1 +m2 + J/R2

The pulley inertia does decrease the speed with whichm1 liftsm2 . 28 / 48



Pulley Dynamics : Newton’s law

It is inconvenient to use an energy-based analysis to compute x(t) or the tensions in
the cable. For the free body diagram of the previous slide, Newton’s law for the mass
m1 andm2 give

m1ẍ = m1g − T1, m2ÿ = T2 −m2g

By using Jθ̈ = R(T1 − T2) and x = y then

T1 = m1g −m1ẍ = m1(g − ẍ)

T2 = m2ÿ +m2g = m2(ÿ + g) = m2(ẍ+ g)

Then

Jθ̈ = (m1 −m2)gR− (m1 +m2)Rẍ

Since x = Rθ , then we have

(
m1 +m2 +

J

R2

)
ẍ = (m1 −m2)g
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Pulley Dynamics : Newton’s law

We can solve it for ẍ and substitute the result to the previous equations to find T1 and
T2 .
To find ẋ and x(t), we can do by using direct integration. Let

A = ẍ =
(m1 −m2)gR2

(m1 +m2)R2 + J

ẋ(t) = At+ ẋ(0)

x(t) =
A

2
t2 + ẋ(0)t+ x(0)

Note to get the solution of ẋ, we have

(
m1 +m2 +

J

R2

)
ẍ = (m1 −m2)g ⇒

(
m1 +m2 +

J

R2

)
dẋ

dx

dx

dt
= (m1 −m2)g(

m1 +m2 +
J

R2

)
dẋẋ = (m1 −m2)gdx ⇒

1

2

(
m1 +m2 +

J

R2

)
ẋ2 = (m1 −m2)gx
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Pulley Dynamic

The two masses shown in Fig are
released from rest. The mass of block
A is 60 kg; the mass of block B is 40
kg. Disregards the masses of the
pulleys and rope. Block A is heavier
than block B, but will block B rise or
fall? Find out by determining the
acceleration of block B by (a) using
free body diagrams and (b) using
conservation of energy.

a) From the free body diagram, we have

2T − 60g = 60ẍA(∗), 40g − T = 40ẍB(∗∗)

If B goes down a distance xB , the A will goes up a distance xB/2. Then
ẍB = 2ẍA .
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Pulley Dynamics

From (∗), T = 30g + 15ẍB and substitute into (∗∗) then 40g − 30g − 15ẍB = 40ẍB .

55ẍB = 10g

ẍB =
2

11
g = 1.784 m/s2(B is going downward.)

b) Choosing gravitational potential energy to be zero at the datum line, the energy
in the system is (we need to find ẍB .)

1

2
mAẋ2

A +
1

2
mB ẋ2

B +mAgxA −mBgxB = k

mAẋAẍA +mB ẋB ẍB +mAgẋA −mBgẋB = 0

Since ẋA = ẋB/2, and ẍA = ẍB/2. Hence

mA
ẋB

2

ẍB

2
+mB ẋB ẍB +mAg

ẋB

2
−mBgẋB = 0(

mA
ẍB

4
+mB ẍB

)
+
(
mA

g

2
−mBg

)
= 0(

60

4
+ 40

)
ẍB =

(
60

2
− 40

)
g, ẍB = 1.784 m/s2
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Pulley Dynamics :

m mw
R

ϕ

f

v
ω

Jw

two wheel

A tractor pulls a cart up a slope, starting from rest and accelerating to 20 m/s in 15 s.
The force in the cable is f , and the body of the cart has a massm. The cart has two
identical wheels, each with radius R, massmw , and inertia Jw about the wheel center.
The two wheels are coupled with an axle whose mass is negligible. Assume that the
wheels do not slip or bounce. Derive an expression for the force f using kinetic energy
equivalence.

Solution: Form the assumption of no slip and no bounce means that the wheel
rotation is directly coupled to the cart translation. We the wheel rotation θ can be
calculated from the cart translation x , because x = Rθ if the wheels do not slip or
bounce.
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Equivalent Mass and Inertia

The kinetic energy of the system is

KE =
1

2
mv2 +

1

2

(
2mwv2

)
+

1

2

(
2Jwω2

)
Because v = Rω, we obtain

KE =
1

2

(
m+ 2mw + 2

Jw

R2

)
v2

=
1

2
mev

2,

whereme = m+ 2mw + 2
Jw

R2
and from the free body diagram we have

mev̇ = f − (m+ 2mw)g sin θ

The acceleration is v̇ = 20/15 = 4/3 m/s2 . We have

f =
4

3
me + (m+ 2mw)g sin θ
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Mechanical Drives

Picture from grabcad.com

Gears transform an input motion, force, or torque into another motion, force, or
torque at the output. For example, a gear pair can be used to reduce speed and
increase torque.
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Mechanical Drives

J1

N2

N1

N =
θ1

θ2

J2

θ1(t)T1(t)

θ2(t)T2(t)

Je

θ1(t)T1(t)
1
N
T2(t)

Je

θ2(t)NT1(t) T2(t)

A pair of Spur-gear shown in Fig. The input shaft is connected to a motor that
produces a torque T1 at a speed θ̇1 = ω1 , and drive the output shaft. One use of such
a system is to increase the effective motor torque. The gear ratio N is defined as the
ratio of the input rotation θ1 to the output rotation θ2 . Thus

N =
N2

N1
=

θ1

θ2
=

r2

r1
=

ω1

ω2
=

T2

T1
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Mechanical Drives: Spur Gears

Consider the spur gears shown in the previous page. Derive the expression for the
equivalent inertia Je felt on the input shaft.

Solution: Let J1 and J2 be the total moments of inertia on the shafts. The kinetic
energy of the system is then

KE =
1

2
J1ω

2
1 +

1

2
J2ω

2
2

=
1

2
J1ω

2
1 +

1

2
J2

[
N1

N2

]2
ω2
1

=
1

2

(
J1 +

[
N1

N2

]2
J2

)
ω2
1 =

1

2
Jeω

2
1

Therefore the equivalent inertia felt on the input shaft is

Je = J1 +

[
N1

N2

]2
J2

This mean that the dynamics of the system can be described by the model Jeω̇1 = Te .

37 / 48



Mechanical Drives: Speed Reducer

For the geared system from the previous example, the inertias is kg.m2 are J1 = 0.1,
for the motor shaft and J2 = 0.4 for the load shaft. The motor speed ω1 is five times
faster than the load speed ω2 , so this device is called a speed reducer. Obtain the
equation of motion (a) in terms of ω1 and (b) in terms of ω2 , assuming that the motor
torque T1 and load torque T2 are given.
Solution: We have N = N2/N1 = ω1/ω2 = 5 (not equal 4 due to the load shaft
effect).

(a) Referencing both inertias to shaft 1 gives the equivalent inertia (from the previous
example).

Je = J1 +
1

25
J2 = 0.116

The ω1 speed is effected by both T1 and T2 but the moment felt on shaft 1 due to T2

is only T2/N . Then the motion equation is

Jeω̇1 = 0.116ω̇1 = T1 +
T2

5
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Mechanical Drives: Speed Reducer

(b) Using the kinetic energy of the system as

KE =
1

2
J1ω

2
1 +

1

2
J2ω

2
2 =

1

2
J1(5ω2)

2 +
1

2
J2ω

2
2

=
1

2
(2.9)ω2

2

Thus the equivalent inertia referenced to shaft 2 is Je = 2.9, and the equation of
motion is

2.9ω̇2 = Te = NT1 + T2 = 5T1 + T2

Note that with a speed reducer
▶ the load speed is slower than the motor speed,
▶ the effect of the motor torque on the load shaft is increased by a factor equal to

the gear ratio N .
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Mechanical Drives: A Three-Gear System

J4

J2

J1

J3 J5

T ω1

ω2

ω3

Assume that the shaft inertias are small. The remaining inertias in kg·m2 are
J1 = 0.005, J2 = 0.01, J3 = 0.02, J4 = 0.04, and J5 = 0.2. The speed ratios are

ω1

ω2
=

3

2
,

ω2

ω3
= 2

Obtain the equation of motion in terms of ω3 . The torque T is given.
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Mechanical Drives: A Three-Gear System

Solution: Note that

ω1 =

(
3

2

)
ω2 =

(
3

2

)
2ω3 = 3ω3

The ratio of the speed ω1/ω2 < J2/J1 , then the system is a speed reducer. The kinetic
energy is

KE =
1

2
J4ω

2
1 +

1

2
J1ω

2
1 +

1

2
J2ω

2
2 +

1

2
J3ω

2
3 +

1

2
J5ω

2
3

=
1

2
(J4 + J1)ω

2
1 +

1

2
J2ω

2
2 +

1

2
(J3 + J5)ω

2
3

=
1

2
(J4 + J1) 9ω

2
3 +

1

2
4ω2

3 +
1

2
(J3 + J5)ω

2
3

=
1

2
(0.665)ω2

3

Since ω1 = 3ω3 , the torque is increased by a factor of 3. Thus the equation of motion
is

0.665ω̇3 = 3T
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Mechanical Drives: Rack-and-Pinion

m

T
θ

x

R

J

A rack-and-pinion is used to convert
rotation into translation. The input
shaft rotates through the angle θ as a
result of the torque T produced by a
motor. The pinion rotates and causes
the rack to translate. Derive the
expression for the equivalent inertia
Je felt on the input shaft. The mass of
the rack ism, the inertia of the pinion
is J , and its mean radius is R.

Solution: The kinetic energy of the system is (neglecting the inertia of hte shaft)

KE =
1

2
mẋ2 +

1

2
Jθ̇2, x = Rθ

We have the expression for KE as

KE =
1

2
m
(
Rθ̇
)2

+
1

2
Jθ̇2 =

1

2

(
mR2 + J

)
θ̇2
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Mechanical Drives: Rack-and-Pinion

Thus the equivalent inertia felt on the shaft is

Je = mR2 + J

and the model of the system’s dynamics is

Jeθ̈ = T,

which can be expressed in terms of x as

Jeẍ = RT

Note: We have no load torque.
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Mechanical Drives: Belt Drive

r1

J1

r2

J2

ω1

ω2

T1

v

m

Belt drives and chain drives shown in Figure. The input shaft is connected to a device
that produces a torque T1 at a speed ω1 , and drives the output shaft. The mean
sprocket radii are r1 and r2 and their inertias are J1 and J2 . The belt mass ism.
Derive the expression for the equivalent inertia Je felt on the input shaft. Note: We
have no load torque.

44 / 48



Mechanical Drives: Belt Drive

Solution:
The kinetic energy of the system is

KE =
1

2
J1ω

2
1 +

1

2
J2ω

2
2 +

1

2
mv2

If the belt does not stretch, the translational speed of the belt is v = r1ω1 = r2ω2 .
Thus we can express KE as

KE =
1

2
J1ω

2
1 +

1

2
J2

(
r1ω1

r2

)2

+
1

2
m (r1ω1)

2 =
1

2

[
J1 + J2

(
r1

r2

)2

+mr21

]
ω2
1

Therefore, the equivalent inertia felt on the input shaft is

Je = J1 + J2

(
r1

r2

)2

+mr21

This means that the dynamics of the system can be described by the model

Jeω̇1 = T1.
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Mechanical Drives: Robot-Arm-Link

A single link of a robot arm is shown in Figure. The arm mass ism and its center of
mass is located a distance L from the joint, which is driven by a motor torque Tm

through a pair of spur gears. The values ofm and L depend on the payload being
carried in the hand and thus can be different for each application. The gear ratio is
N = 2 (the motor shaft has the greater speed). The motor and gear rotation axes are
fixed by bearings. To control the motion of the arm we need to have its equation of
motion. Obtain this equation in terms of the angle θ. The given values for the motor,
shaft, and gear inertias are (Here we use I instead of J .)
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Mechanical Drives: Robot-Arm-Link

Im = 0.05 kg ·m2 IG1
= 0.025 kg ·m2 IS1

= 0.01kg ·m2

IG2
= 0.1 kg ·m2 IS2

= 0.02 kg ·m2

Solution: Here we need to model the system as a single inertia rotating about the
motor shaft with a speed ω1 . To find the equivalent inertia about this shaft we first
obtain the expression for the kinetic energy of the total system and express it in terms
of the shaft speed ω1 . Note that the massm is translating with a speed Lω2 (Lθ = x)

KE =
1

2

(
Im + IS1

+ IG1

)
ω2
1 +

1

2

(
IS2

+ IG2

)
ω2
2 +

1

2
m (Lω2)

2 .

Since ω2 = ω1/N = ω1/2, thus

KE =
1

2

[
Im + IS1

+ IG1
+

1

4

(
IS2

+ IG2
+mL2

)]
ω2
1

Therefore, the equivalent inertia referenced to the motor shaft is

Ie = Im + IS1
+ IG1

+
1

4

(
IS2

+ IG2
+mL2

)
= 0.115 + 0.25mL2
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Mechanical Drives: Robot-Arm-Link

The equation of motion for this equivalent inertia can be obtained by noting that the
gravity momentmgL sin θ, which acts on shaft 2, is also felt on the motor shaft, but
reduced by a factor of N due to the gear pair. (Load torque makes speed of system
reduce.) Thus

Ieω̇1 = Tm −
1

N
mgL sin θ

But ω1 = Nω2 = Nθ̇, thus

IeNθ̈ = Tm −
1

N
mgL sin θ(

0.23 + 0.5mL2
)
θ̈ = Tm − 4.9mL sin θ
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