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Motivation

The Laplace Transform convert integral and differential equations into algebraic
equations.

It can applies to
▶ general signal, not just sinusoids
▶ handles transient conditions

It can be used to analyze
▶ Linear Constant Coefficient Ordinary Differential Equation (LCCODE) or LTI system
▶ complicated RLC circuits with sources
▶ complicated systems with integrators, differentiators, gains
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The Unilateral Laplace transform

We will be interested in signals defined for t > 0.

Laplace Transform. Let f(t), t > 0, be a given signal (function). The Unilateral
Laplace transform of a signal (function) f(t) is defined by

F (s) = L{f(t)} =

∫ ∞

0
f(t)e−stdt,

for those s ∈ C for which the integral exists.

▶ F is a complex-values function of complex numbers
▶ s is called the (complex) frequency variable, with units sec−1 ; t is called the

time variable (in sec); st is unitless.
▶ For convenience, we will call the unilateral laplace transform as the laplace

transform.
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The Laplace transform: Example

Exponential function: f(t) = et

F (s) =

∫ ∞

0
ete−stdt =

∫ ∞

0
e(1−s)tdt =

1

1− s
e(1−s)t

∣∣∣∣∞
0

=
1

s− 1

provide we can say e(1−s)t → 0 as t → ∞, which is true for Re s > 1:

|e(1−s)t| = |e−j(Im s)t|︸ ︷︷ ︸
=1

|e(1−Re s)t| = e(1−Re s)t

▶ the integral defining F (s) exists for all s ∈ C with Re s > 1. This condition is
called region of convergence (ROC) of F (s).

▶ however the resulting formula for F (s) makes sense for all s ∈ C excepts s = 1.
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The Laplace transform: Example

Constant or unit step function: f(t) = 1(t) (for t ≥ 0)

F (s) =

∫ ∞

0
e−stdt = −

1

s
e−st

∣∣∣∣∞
0

=
1

s

provided we can say e−st → 0 as t → ∞, which is true for Re s > 0 since

|e−st| = |e−j(Im s)t||e−(Re s)t| = e−(Re s)t

▶ the integral defining F (s) makes sense for all s with Re s > 0.
▶ however the resulting formula for F (s) makes sense for all s except s = 0.
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The Laplace transform: Example

Sinusoid : first express f(t) = cosωt as

f(t) =
1

2
ejωt +

1

2
e−jωt

now we can find F as

F (s) =

∫ ∞

0
e−st

(
1

2
ejωt +

1

2
e−jωt

)
dt

=
1

2

∫ ∞

0
e(−s+jω)tdt+

1

2

∫ ∞

0
e(−s−jω)tdt

=
1

2

1

s− jω
+

1

2

1

s+ jω

=
s

s2 + ω2

(valid for Re s > 0; final formula for s ̸= ±jω)
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The Laplace transform: Example

Powers of t: f(t) = tn, (n ≥ 1)

F (s) =

∫ ∞

0
tne−stdt = tn

(
−e−st

s

)∣∣∣∣∞
0

+
n

s

∫ ∞

0
tn−1e−stdt

=
n

s
L(tn−1)

provided tne−st → 0 if t → ∞, which is true for Re s > 0. Applying the formular
recursively, we obtain

F (s) =
n!

sn+1

valid for Re s > 0; final formula exists for all s ̸= 0.
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The Laplace transform: Impulses

If f(t) contains impulses at t = 0 we choose to include them in the integral defining
F (s):

F (s) =

∫ ∞

0−
f(t)e−stdt

example: impulse function, f(t) = δ(t)

F (s) =

∫ ∞

0−
δ(t)e−stdt = e−st

∣∣
t=0

= 1 sampling property

Similarly for f(t) = δ(k)(t) we have

F (s) =

∫ ∞

0−
δ(k)(t)e−stdt = (−1)k

dk

dtk
e−st

∣∣∣∣
t=0

= ske−st
∣∣∣
t=0

= sk
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The Laplace transform: Multiplication by t

Let f(t) be a signal and define

g(t) = tf(t) then we have G(s) = −
d

ds
F (s)

To verify formula, just differentiate both sides of

F (s) =

∫ ∞

0
e−stf(t)dt

with respect to s to get

d

ds
F (s) =

∫ ∞

0
(−t)e−stf(t)dt =

∫ ∞

0
(−t)f(t)e−stdt

= −
∫ ∞

0
tf(t)e−stdt = −G(s)
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The Laplace transform: Multiplication by t

Examples:
▶ f(t) = e−t, g(t) = te−t

L
{
te−t

}
= −

d

ds

1

s+ 1
=

1

(s+ 1)2

▶ f(t) = te−t, g(t) = t2e−t

L
{
t2e−t

}
= −

d

ds

1

(s+ 1)2
=

2

(s+ 1)3

▶ in general

L
{
tke−λt

}
=

k!

(s+ λ)k+1
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Inverse Laplace transform

In principle we can recover f(t) from F (s) via

Inverse Laplace Transform.

f(t) =
1

2πj

∫ σ+j∞

σ−j∞
F (s)estds

where σ is large enough that F (s) is defined for Re s ≥ σ.

In practical, no one uses this formula!.
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Inverse Laplace Transform

Finding the inverse Laplace transform by using the standard formula

f(t) =
1

2πj

∫ σ+j∞

σ−j∞
F (s)estds

is difficult and tedious.
▶ We can find the inverse transforms from the transform table.
▶ All we need is to express F (s) as a sum of simpler functions of the forms listed

in the Laplace transform table.
▶ Most of the transforms F (s) of practical interest are rational functions: that is

ratios of polynomials in s.
▶ Such functions can be expressed as a sum of simpler functions by using partial

fraction expansion.
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Inverse Laplace Transform

Example: Find the inverse Laplace transform of 7s− 6

s2 − s− 6
.

F (s) =
7s− 6

(s+ 2)(s− 3)
=

k1

s+ 2
+

k2

s− 3

Using a “cover up” method:

k1 =
7s− 6

s− 3

∣∣∣∣
s=−2

=
−14− 6

−2− 3
= 4

k2 =
7s− 6

s+ 2

∣∣∣∣
s=3

=
21− 6

3 + 2
= 3

Therefore

F (s) =
7s− 6

(s+ 2)(s− 3)
=

4

s+ 2
+

3

s− 3
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Inverse Laplace Transform

Using the table of Laplace transforms, we obtain

f(t) = L−1

{
4

s+ 2
+

3

s− 3

}
= (4e−2t + 3e3t), t ≥ 0.

Example: Find the inverse Laplace transform of F (s) =
2s2 + 5

s2 + 3s+ 2
.

F (s) is an improper function withm = n. In such case we can express F (s) as a sum
of the coefficient cn (the coefficient of the highest power in the numerator) plus
partial fractions corresponding to the denumerator.

F (s) =
2s2 + 5

(s+ 1)(s+ 2)
= 2 +

k1

s+ 1
+

k2

s+ 2
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Inverse Laplace Transform

where

k1 =
2s2 + 5

s+ 2

∣∣∣∣
s=−1

=
2 + 5

−1 + 2
= 7

and

k2 =
2s2 + 5

s+ 1

∣∣∣∣
s=−2

=
8 + 5

−2 + 1
= −13

Therefore F (s) = 2 +
7

s+ 1
−

13

s+ 2
. From the table, we obtain

f(t) = 2δ(t) + 7e−t − 13e−2t, t ≥ 0.
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Inverse Laplace Transform

Example: Find the inverse Laplace transform of F (s) =
6(s+ 34)

s(s2 + 10s+ 34)

F (s) =
6(s+ 34)

s(s2 + 10s+ 34)
=

6(s+ 34)

s(s+ 5− j3)(s+ 5 + j3)

=
k1

s
+

k2

s+ 5− j3
+

k∗2
s+ 5 + j3

Note that the coefficients (k2 and k∗2 ) of the conjugate terms must also be conjugate.
Now

k1 =
6(s+ 34)

s2 + 10s+ 34

∣∣∣∣
s=0

=
6× 34

34
= 6

k2 =
6(s+ 34)

s(s+ 5 + j3)

∣∣∣∣
s=−5+j3

=
29 + j3

−3− j5
= −3 + j4

k∗2 = −3− j4

To use the Laplace transform table, we need to express k2 and k∗2 in polar form

−3 + j4 =
√

32 + 42ej tan−1(4/−3) = 5ej tan−1(4/−3)
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Inverse Laplace Transform

From the Figure below, we observe that

k2 = −3 + j4 = 5ej126.9
◦
and k∗2 = 5e−j126.9◦

Therefore F (s) =
6

s
+

5ej126.9
◦

s+ 5− j3
+

5e−j126.9◦

s+ 5 + j3

From the table pair 10b

f(t) =
[
6 + 10e−5t cos(3t+ 126.9◦)

]
1(t)

−3 + j4
j4

−3

126.9◦

−53.1◦

3− j4
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Inverse Laplace Transform

F (s) =
6(s+ 34)

s(s2 + 10s+ 34)
=

k1

s
+

As+B

s2 + 10s+ 34

We have already determined that k1 = 6 by the (Heaviside) “cover-up” method.
Therefore

6(s+ 34)

s(s2 + 10s+ 34)
=

6

s
+

As+B

s2 + 10s+ 34

Clearing the fractions by multiplying both sides by s(s2 + 10s+ 34) yields

6(s+ 34) = 6(s2 + 10s+ 34) + s(As+B)

= (6 +A)s2 + (60 +B)s+ 204

Now, equating the coefficients of s2 and s on both sides yields

0 = (6 +A) =⇒ A = −6

6 = 60 +B =⇒ B = −54
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Inverse Laplace Transform

and

F (s) =
6

s
+

−6s− 54

s2 + 10s+ 34

Now from the table, the parameters for this inverse are
A = −6, B = −54, a = 5, c = 34, and b =

√
c− a2 = 3, and

r =

√
A2c+B2 − 2ABa

c− a2
= 10, θ = tan−1 Aa−B

A
√
c− a2

= 126.9◦

b =
√

c− a2

Therefore

f(t) =
[
6 + 10e−5t cos(3t+ 126.9◦)

]
1(t)

which agrees with the previous result.
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Inverse Laplace Transform

F (s) =
6(s+ 34)

s(s2 + 10s+ 34)
=

6

s
+

As+B

s2 + 10s+ 34

This step can be accomplished by multiplying both sides of the above equation by s
and then letting s → ∞. This procedure yields

0 = 6 +A =⇒ A = −6.

Therefore

6(s+ 34)

s(s2 + 10s+ 34)
=

6

s
+

−6s+B

s2 + 10s+ 34

To find B, we let s take on any convenient value, say s = 1, in this equation to obtain

210

45
= 6 +

B − 6

45
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Inverse Laplace Transform

Multiplying both sides of this equation by 45 yields

210 = 270 +B − 6 =⇒ B = −54

a deduction which agrees with the results we found earlier.
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Inverse Laplace Transform

Example: Find the inverse Laplace transform of F (s) =
8s+ 10

(s+ 1)(s+ 2)3

F (s) =
8s+ 10

(s+ 1)(s+ 2)3
=

k1

s+ 1
+

a0

(s+ 2)3
+

a1

(s+ 2)2
+

a2

a+ 2

where
k1 =

8s+ 10

(s+ 2)3

∣∣∣∣
s=−1

= 2

a0 =
8s+ 10

(s+ 1)

∣∣∣∣
s=−2

= 6

a1 =

{
d

ds

[
8s+ 10

(s+ 1)

]}
s=−2

= −2

a2 =
1

2

{
d2

ds2

[
8s+ 10

(s+ 1)

]}
s=−2

= −2

Note : the general formula is

an =
1

n!

{
dn

dsn

[
(s − λ)

r
F (s)

]}
s=λ

23 / 76



Inverse Laplace Transform

Therefore

F (s) =
2

s+ 1
+

6

(s+ 2)3
−

2

(s+ 2)2
−

2

s+ 2

and

f(t) =
[
2e−t + (3t2 − 2t− 2)e−2t

]
1(t)

Alternative Method: A Hybrid of Heaviside and Clearing Fractions: Using the values
k1 = 2 and a0 = 6 obtained earlier by the Heaviside “cover-up” method, we have

8s+ 10

(s+ 1)(s+ 2)3
=

2

s+ 1
+

6

(s+ 2)3
+

a1

(s+ 2)2
+

a2

s+ 2
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Inverse Laplace Transform

We now clear fractions by multiplying both sides of the equation by (s+ 1)(s+ 2)3 .
This procedure yields

8s+ 10 = 2(s+ 2)3 + 6(s+ 1) + a1(s+ 1)(s+ 2) + a2(s+ 1)(s+ 2)2

= (2 + a2)s
3 + (12 + a1 + 5a2)s

2 + (30 + 3a1 + 8a2)s+ (22 + 2a1 + 4a2)

Equating coefficients of s3 and s2 on both sides, we obtain

0 = (2 + a2) =⇒ a2 = −2

0 = 12 + a1 + 5a2 = 2 + a1 =⇒ a1 = −2

Equating the coefficients of s1 and s0 serves as a check on our answers.

8 = 30 + 3a1 + 8a2

10 = 22 + 2a1 + 4a2

Substitution of a1 = a2 = −2, obtained earlier, satisfies these equations.
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Inverse Laplace Transform

Alternative Method: A Hybrid of Heaviside and Short-Cuts: Using the values k1 = 2

and a0 = 6, determined earlier by the Heaviside method, we have

8s+ 10

(s+ 1)(s+ 2)3
=

2

s+ 1
+

6

(s+ 2)3
+

a1

(s+ 2)2
+

a2

s+ 2

There are two unknowns, a1 and a2 . If we multiply both sides by s and then let
s → ∞, we eliminate a1 . This procedure yields

0 = 2 + a2 =⇒ a2 = −2

Therefore

8s+ 10

(s+ 1)(s+ 2)3
=

2

s+ 1
+

6

(s+ 2)3
+

a1

(s+ 2)2
−

2

s+ 2

There is now only one unknown, a1 . This value can be determined readily by equal to
any convenient value, say s = 0. This step yields

10

8
= 2 +

3

4
+

a1

4
− 1 =⇒ a1 = −2.
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The Laplace transform properties

The Laplace transform is linear: if f(t) and g(t) are any signals, and a is any scalar, we
have

L{af(t)} = aF (s), L{(f(t) + g(t))} = F (s) +G(s)

i.e., homogeneity and superposition hold.
Example:

L
{
3δ(t)− 2et

}
= 3L{δ(t)} − 2L

{
et
}

= 3−
2

s− 1

=
3s− 5

s− 1
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The Laplace transform properties

The Laplace transform is one-to-one: if L{f(t)} = L{g(t)} then f(t) = g(t).
▶ F (s) determines f(t)
▶ inverse Laplace transform L−1 {f(t)} is well defined.

Example:

L−1

{
3s− 5

s− 1

}
= 3δ(t)− 2et

in other words, the only function f(t) such that
F (s) =

3s− 5

s− 1

is f(t) = 3δ(t)− 2et .

28 / 76



The Laplace transform properties: Time delay

This property states that if

f(t) ⇐⇒ F (s)

then for T ≥ 0

f(t− T ) ⇐⇒ e−sTF (s)

(If g(t) is f(t), delayed by T seconds), then we have G(s) = e−sTF (s).
Derivation:

G(s) =

∫ ∞

0
e−stg(t)dt =

∫ ∞

0
e−stf(t− T )dt

=

∫ ∞

0
e−s(τ+T )f(τ)dτ = e−sTF (s)
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The Laplace transform properties: Time delay

To avoid a pitfall, we should restate the property as follow:

f(t)1(t) ⇐⇒ F (s)

then

f(t− T )1(t− T ) ⇐⇒ e−sTF (s), T ≥ 0.
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The Laplace transform properties: Time delay example

1 2 3 40
t

f(t)
f(t)

0

1

1 2 3 4

Find the Laplace Transform of f(t) depicted in Figure above.
The signal can be described as

f(t) = (t− 1)[1(t− 1)− 1(t− 2)] + [1(t− 2)− 1(t− 4)]

= (t− 1)1(t− 1)− (t− 1)1(t− 2) + 1(t− 2)− 1(t− 4)

= (t− 1)1(t− 1)− (t− 2)1(t− 2)− 1(t− 4)
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The Laplace transform properties: Time delay example

Since t ⇐⇒
1

s2
yields

(t− 1)1(t− 1) ⇐⇒
1

s2
e−s and (t− 2)1(t− 2) ⇐⇒

1

s2
e−2s

Also 1(t) ⇐⇒
1

s
yields

1(t− 4) ⇐⇒
1

s
e−4s

Therefore

F (s) =
1

s2
e−s −

1

s2
e−2s −

1

s
e−4s
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The Laplace transform properties: Time delay example

Find the inverse Laplace transform of

F (s) =
s+ 3 + 5e−2s

(s+ 1)(s+ 2)

The F (s) can be separated in two parts

F (s) =
s+ 3

(s+ 1)(s+ 2)︸ ︷︷ ︸
F1(s)

+
5e−2s

(s+ 1)(s+ 2)︸ ︷︷ ︸
F2(s)e−2s

where

F1(s) =
s+ 3

(s+ 1)(s+ 2)
=

2

s+ 1
−

1

s+ 2

F2(s) =
5

(s+ 1)(s+ 2)
=

5

s+ 1
−

5

s+ 2
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The Laplace transform properties
Time delay example

Therefore

f1(t) =
(
2e−t − e−2t

)
f2(t) = 5

(
e−t − e−2t

)
Since

F (s) = F1(s) + F2(s)e
−2s

f(t) = f1(t) + f2(t− 2)

=
(
2e−t − e−2t

)
1(t) + 5

[
e−(t−2) − e−2(t−2)

]
1(t− 2)
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The Laplace transform properties: Time scaling

Define a signal g(t) by g(t) = f(at), where a > 0; then

G(s) =
1

a
F (

s

a
).

time are scaled by a, then frequencies are scaled by 1/a.

G(s) =

∫ ∞

0
f(at)e−stdt =

1

a

∫ ∞

0
f(τ)e−

s
a
τdτ =

1

a
F (

s

a
),

where τ = at.
Example: L

{
et
}
=

1

s− 1
so

L
{
eat

}
=

1

a

1
s
a
− 1

=
1

s− a

35 / 76



The Laplace transform properties: Exponential scaling

Let f(t) be a signal and a a scale, and define g(t) = eatf(t); then

G(s) = F (s− a)

Proof:

G(s) =

∫ ∞

0
e−steatf(t)dt =

∫ ∞

0
e−(s−a)tf(t)dt = F (s− a)

Example: L{cos t} =
s

s2 + 1
, and hence

L
{
e−t cos t

}
=

s+ 1

(s+ 1)2 + 1
=

s+ 1

s2 + 2s+ 2
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The Laplace transform properties: Exponential scaling

Example: Consider F (s) =
−6s− 54

s2 + 10s+ 34
. By using the exponential exponential

scaling, we obtain

−6s− 54

s2 + 10s+ 34
=

−6(s+ 5)− 24

(s+ 5)2 + 9
=

−6(s+ 5)

(s+ 5)2 + 32
+

−8(3)

(s+ 5)2 + 32

Then,

f(t) = −6e−5t cos 3t− 8e−5t sin 3t

= 10e−5t cos(3t+ 127◦)

You can do this inverse Laplace transform using only standard Laplace transform table.
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The Laplace transform properties: Derivative

If signal f(t) is continuous at t = 0, then

L
{
df

dt

}
= sF (s)− f(0);

▶ time-domain differentiation becomes multiplication by frequency variable s (as
with phasors)

▶ plus a term that includes initial condition (i.e., −f(0))
higher-order derivatives: applying derivative formula twice yields

L
{
d2f(t)

dt2

}
= sL

{
df(t)

dt

}
−

df(t)

dt

= s(sF (s)− f(0))−
df(0)

dt
= s2F (s)− sf(0)−

df(0)

dt

similar formulas hold for L
{
f (k)

}
.
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The Laplace transform properties: Derivation of derivative
formula

Start from the defining integral

G(s) =

∫ ∞

0

df(t)

dt
e−stdt

integration by parts yields

G(s) = e−stf(t)
∣∣∣∞
0

−
∫ ∞

0
f(t)(−se−st)dt

= f(t)e−s∞ − f(0) + sF (s)

we recover the formula

G(s) = sF (s)− f(0)
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The Laplace transform properties: Derivative example

1. f(t) = et , so f ′(t) = et and

L{f(t)} = L
{
f ′(t)

}
=

1

s− 1

by using L{f ′(t)} = s
1

s− 1
− 1, which is the same.

2. sinωt = − 1
ω

d
dt

cosωt, so

L{sinωt} = −
1

ω

(
s

s

s2 + ω2
− 1

)
=

ω

s2 + ω2

3. f(t) is a unit ramp, so f ′(t) is a unit step

L
{
f ′(t)

}
= s

(
1

s2

)
− 0 =

1

s
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The Laplace transform properties: Integral

Let g(t) be the running integral of a signal f(t), i.e.,

g(t) =

∫ t

0
f(τ)dτ

then G(s) =
1

s
F (s), i.e., time-domain integral become division by frequency variable

s.
Example: f(t) = δ(t) is a unit impulse function, so F (s) = 1; g(t) is the unit step

G(s) =
1

s
.

Example: f(t) is a unit step function, so F (s) = 1/s; g(t) is the unit ramp function
(g(t) = t for t ≥ 0),

G(s) =
1

s2
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The Laplace transform properties: Derivation of integral

G(s) =

∫ ∞

t=0

(∫ t

τ=0
f(τ)dτ

)
e−stdt

here we integrate horizontally first over the triangle 0 ≤ τ ≤ t.
t

τ

Let’s switch the order, integrate vertically first:

G(s) =

∫ ∞

τ=0

∫ ∞

t=τ
f(τ)e−stdtdτ

=

∫ ∞

τ=0
f(τ)

(∫ ∞

t=τ
e−stdt

)
dτ

=

∫ ∞

τ=0
f(τ)

1

s
e−sτdτ =

F (s)

s
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The Laplace transform properties: Convolution

The convolution of signals f(t) and g(t), denoted h(t) = f(t) ∗ g(t), is the signal

h(t) =

∫ t

0
f(τ)g(t− τ)dτ

In terms of Laplace transforms:

H(s) = F (s)G(s)

The Laplace transform turns convolution into multiplication.
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The Laplace transform properties: Convolution cont.

Let’s show that L{f(t) ∗ g(t)} = F (s)G(s) :

H(s) =

∫ ∞

t=0
e−st

(∫ t

τ=0
f(τ)g(t− τ)dτ

)
dt

=

∫ ∞

t=0

∫ t

τ=0
e−stf(τ)g(t− τ)dτdt

where we integrate over the triangle 0 ≤ τ ≤ t. By changing the order of the
integration and changing the limits of integration yield

H(s) =

∫ ∞

τ=0

∫ ∞

t=τ
e−stf(τ)g(t− τ)dtdτ
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The Laplace transform properties: Convolution cont.

Change variable t to t̄ = t− τ ; dt̄ = dt; region of integration becomes τ ≥ 0, t̄ ≥ 0

H(s) =

∫ ∞

τ=0

∫ ∞

t̄=0
e−s(t̄+τ)f(τ)g(t̄)dt̄dτ

=

(∫ ∞

τ=0
e−sτf(τ)dτ

)(∫ ∞

t̄=0
e−st̄g(t̄)dt̄

)
= F (s)G(s)
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The Laplace transform properties: Convolution cont.

Example: Using the time convolution property of the Laplace transform, determine
c(t) = eat1(t) ∗ ebt1(t). From the convolution property, we have

C(s) =
1

s− a

1

s− b
=

1

a− b

[
1

s− a
−

1

s− b

]

The inverse transform of the above equation yields

c(t) =
1

a− b
(eat − ebt), t ≥ 0.
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Applications: Solution of Differential Equations

Solve the second-order linear differential equation

(D2 + 5D + 6)y(t) = (D + 1)f(t)

if the initial conditions are y(0−) = 2, ẏ(0−) = 1, and the input f(t) = e−4t
1(t).

The equation is

d2y

dt2
+ 5

dy

dt
+ 6y(t) =

df

dt
+ f(t).

Let

y(t) ⇐⇒ Y (s).

Then
dy

dt
⇐⇒ sY (s)− y(0−) = sY (s)− 2.

47 / 76



Applications: Solution of Differential Eqautions

and

d2y

dt2
⇐⇒ s2Y (s)− sy(0−)− ẏ(0−) = s2Y (s)− 2s− 1.

Moreover, for f(t) = e−4t
1(t),

F (s) =
1

s+ 4
, and df

dt
⇐⇒ sF (s)− f(0−) =

s

s+ 4
− 0 =

s

s+ 4
.

Taking the Laplace transform, we obtain

[
s2Y (s)− 2s− 1

]
+ 5 [sY (s)− 2] + 6Y (s) =

s

s+ 4
+

1

s+ 4

Collecting all the terms of Y (s) and the remaining terms separately on the left-hand
side, we obtain

(s2 + 5s+ 6)Y (s)− (2s+ 11) =
s+ 1

s+ 4
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Applications: Solution of Differential Equations

Therefore

(s2 + 5s+ 6)Y (s) = (2s+ 11) +
s+ 1

s+ 4
=

2s2 + 20s+ 45

s+ 4

and

Y (s) =
2s2 + 20s+ 45

(s2 + 5s+ 6)(s+ 4)

=
2s2 + 20s+ 45

(s+ 2)(s+ 3)(s+ 4)

Expanding the right-hand side into partial fractions yields

Y (s) =
13/2

s+ 2
−

3

s+ 3
−

3/2

s+ 4

The inverse Laplace transform of the above equation yields

y(t) =

(
13

2
e−2t − 3e−3t −

3

2
e−4t

)
1(t).
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Zero-Input and Zero-State Components of Response

▶ The Laplace transform method gives the total response, which includes
zero-input and zero-state components.

▶ The initial condition terms in the response give rise to the zero-input response.

For example in the previous example, (s2 + 5s+ 6)Y (s)− (2s+ 11) =
s+ 1

s+ 4
so that

(s2 + 5s+ 6)Y (s) = (2s+ 11)︸ ︷︷ ︸
initial condition terms

+
s+ 1

s+ 4︸ ︷︷ ︸
input terms
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Zero-Input and Zero-State Components of Response

Therefore

Y (s) =
2s+ 11

s2 + 5s+ 6︸ ︷︷ ︸
zero-input component

+
s+ 1

(s+ 4)(s2 + 5s+ 6)︸ ︷︷ ︸
zero-state component

=

[
7

s+ 2
−

5

s+ 3

]
+

[
−1/2

s+ 2
+

2

s+ 3
−

3/2

s+ 4

]

Taking the inverse transform of this equation yields

y(t) = (7e−2t − 5e−3t)1(t)︸ ︷︷ ︸
zero-input response

+(−
1

2
e−2t + 2e−3t −

3

2
e−4t)1(t)︸ ︷︷ ︸

zero-state response
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Analysis of Electrical Networks

▶ It is possible to analyze electrical networks directly without having to write the
integro-differential equation.

▶ This procedure is considerably simpler because it permits us to treat an
electrical network as if it was a resistive network.

▶ To do such a procedure, we need to represent a network in “frequency domain”
where all the voltages and currents are represented by their Laplace transforms.
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Analysis of Electrical Networks

zero initial conditions case:
If v(t) and i(t) are the voltage across and the current through an inductor of L
henries, then

v(t) = L
di(t)

dt
⇐⇒ V (s) = sLI(s), i(0) = 0.

Similarly, for a capacitor of C farads, the voltage-current relationship is

i(t) = C
dv(t)

dt
⇐⇒ V (s) =

1

Cs
I(s), v(0) = 0.

For a resistor of R ohms, the voltage-current relationship is

v(t) = Ri(t) ⇐⇒ V (s) = RI(s).
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Analysis of Electrical Networks

▶ Thus, in the “frequency domain,” the voltage-current relationships of an
inductor and a capacitor are algebraic;

▶ These elements behave like resistors of “resistance” Ls and 1/Cs, respectively.
▶ The generalized “resistance” of an element is called its impedance and is given

by the ratio V (s)/I(s) for the element (under zero initial conditions).
▶ The impedances of a resistor of R ohms, and inductor of L henries, and a

capacitance of C farads are R, Ls, and 1/Cs, respectively.
▶ The Kirchhoff’s laws remain valid for voltages and currents in the frequency

domain.
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Analysis of Electrical Networks

Find the loop current i(t) in the circuit, if all the initial conditions are zero.

−
+

101(t)

1 H 3 Ω

1

2
Fi(t) −

+10

s

s 3

2

s
I(s)

In the first step, we represent the circuit in the frequency domain shown in the right
hand side. The impedance in the loop is

Z(s) = s+ 3 +
2

s
=

s2 + 3s+ 2

s

The input voltage is V (s) = 10/s. Therefore, the loop current I(s) is

I(s) =
V (s)

Z(s)
=

10/s

(s2 + 3s+ 2)/s
=

10

s2 + 3s+ 2
=

10

(s+ 1)(s+ 2)
=

10

s+ 1
−

10

s+ 2

The inverse transform of the equation yields: i(t) = 10(e−t − e−2t)1(t).
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Analysis of Electrical Networks

A capacitor C with an initial voltage v(0) can be represented in the frequency domain
by an uncharged capacitor of impedance 1/Cs in series with a voltage source of value
v(0)/s or as the same uncharged capacitor in parallel with a current source of value
Cv(0).

i(t)

C
+
v(0)

−

−

v(t)

+

(a)

I(s)

1

Cs

−

+ v(0)

s

−

V (s)

+

(b)

I(s)

1

Cs
Cv(0)

−

V (s)

+

(c)

i(t) = C
dv

dt
⇐⇒ I(s) = C[sV (s)− v(0)]

Rearranging the equation, we obtain

V (s) =
1

Cs
I(s) +

v(0)

s
or V (s) =

1

Cs
[I(s) + Cv(0)]
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Analysis of Electrical Networks

An inductor L with an initial voltage i(0) can be represented in the frequency domain
by an inductor of impedance Ls in series with a voltage source of value Li(0) or by
the same inductor in parallel with a current source of value i(0)/s.

i(t)

L

−

v(t)

+

(a)

I(s)

Ls

−

+
Li(0)

−

V (s)

+

(b)

I(s)

Ls
i(0)

s

−

V (s)

+

(c)

v(t) = L
di

dt
⇐⇒ V (s) = L[sI(s)− i(0)]

Rearranging the equation, we obtain

V (s) = sLI(s)− Li(0) or V (s) = Ls

[
I(s)−

i(0)

s

]
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Analysis of Electrical Networks

Find the loop current i(t) in the circuit, if y(0) = 2 and vC(0) = 10.

−
+

101(t)

y(0−) = 2

1 H 2 Ω

1

5
F

+
10 V−

y(t) −
+10

s

s
− +

2
2

5

s

−
+ 10

s

Y (s)

The right hand side figure shows the frequency-domain representation of the circuit.
Applying mesh analysis we have

−
10

s
+ sY (s)− 2 + 2Y (s) +

5

s
Y (s) +

10

s
= 0

Y (s) =
2

s+ 2 + 5
s

=
2s

s2 + 2s+ 5
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Analysis of Electrical Networks

Y (s) =
2s

s2 + 2s+ 5
=

2(s+ 1)

(s+ 1)2 + 22
−

2

(s+ 1)2 + 22)

Therefore

y(t) = e−t(2 cos 2t− sin 2t) = e−t(C cos θ cos 2t− C sin θ sin 2t),

since

C =
√

22 + 1 =
√
5, θ = tan−1 2

4
= 26.6◦

then

y(t) =
√
5e−t cos(2t+ 26.6◦)1(t).
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Analysis of Electrical Networks

The switch in the circuit is in the closed position for a long time before t = 0, when it
is opened instantaneously. Find the currents y1(t) and y2(t) for t ≥ 0.

20 V

y1(t)

1 F
+
vC− 1 Ω

1

2
H

4 V

t = 0

1

5
Ω

(�)

y2(t) −
+20

s

−+

16

s
1

s 1

s

2

−
+

2

Y1(s)
1

5
Y2(s)

(�)

When the switch is closed and the steady-state conditions are reached, the capacitor
voltage vC = 16 volts, and the inductor current y2 = 4 A. The right hand side circuit
shows the transformed version of the circuit in the left hand side. Using mesh
analysis, we obtain

Y1(s)

s
+

1

5
[Y1(s)− Y2(s)] =

4

s

−
1

5
Y1(s) +

6

5
Y2(s) +

s

2
Y2(s) = 2
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Analysis of Electrical Networks

Rewriting in matrix form, we have

[ 1
s
+ 1

5
− 1

5
− 1

5
6
5
+ s

2

] [
Y1(s)

Y2(s)

]
=

[ 4
s
2

]

Therefore,

Y1(s) =
24(s+ 2)

s2 + 7s+ 12

=
24(s+ 2)

(s+ 3)(s+ 4)
=

−24

s+ 3
+

48

s+ 4

Y2(s) =
4(s+ 7)

s2 + 7s+ 12
=

16

s+ 3
−

12

s+ 4
.

Finally,

y1(t) = (−24e−3t + 48e−4t)1(t)

y2(t) = (16e−3t − 12e−4t)1(t)
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Transfer Functions of Linear Continuous-Times Systems

Transfer Function. The transfer function of a linear time-invariant continuous-
time system (LTICT) is the ratio of the Laplace transforms of the output and the
input under zero initial conditions.

−
+

−

v1(t)

+

i1(t) R i2(t) R

C
+
v2(t)−

C

The loop equation for zero initial
conditions,(

R+
1

sC

)
I1(s)−

1

sC
I2(s) = V1(s)

−
1

sC
I1(s) +

(
R+

2

sC

)
I2(s) = 0

Solving the equations, we obtain

I2(s) =
sCV1

s2C2R2 + sCR+ 1
= sCV2(s)

H(s) =
V2(s)

V1(s)
=

1

s2C2R2 + sCR+ 1
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Transfer Functions of Linear Continuous-Times Systems

▶ Poles and zeros are the roots of the denominator and numerator
polynomials,respectively, of a rational function.

▶ The poles of the transfer function are also its natural frequencies.
▶ The zeros of a transfer function can be considered as the frequencies at which

there will be no output; in other words, inputs at these frequencies will be
blocked by the system.

H(s) =
20(s+ 1)

(s+ 2)(s2 + 4s+ 13)

▶ We have a zero at −1 and three
poles at −2,−2± j3.

▶ We can reconstruct the transfer
function from the pole-zero map,
except the scale factor.

Re

Im

×

×

×−2 ◦−1

j3

−j3
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Laplace Transforms of Causal Repeating Functions

How can we take the Laplace transform of a causal function, which repeats every T
seconds for t > 0?

▶ Let us denote this function as x(t) and define X1(s) as the Laplace transform of
the first cycle of the function. This implies that

X1(s) =

∫ T−

0−
x(t)e−stdt

▶ Using the fact that all subsequent complete cycles of the function can be
obtained by shifting the first cycle by T, 2T, 3T, . . . ,, we can write the following
expression for the Laplace transform of the entire function x(t):

X(s) = X1(s)
(
1 + e−sT + e−sT + e−3sT + · · ·

)
=

X1(s)

1− e−sT

▶ The last line follows from the properties of a geometric series:
∞∑

n=0

e−nsT =
1

1− e−sT
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Laplace Transforms of Causal Repeating Functions

T
2

T 3T
2

2T

−A

A

0
t

x(t)

The first cycle of this waveform can be expressed as

x1(t) = A1(t)− 2A1(t−
T

2
) +A1(t− T )

Taking the Laplace transform we get

X1(s) =
A

s

(
1− 2e−sT/2 + e−sT

)
⇒ X(s) =

X1(s)

1− e−sT

X(s) =
A

s

(
1− 2e−sT/2 + e−sT

)
1− e−sT

=
A

s

(1− e−sT/2)(1− e−sT/2)

(1− e−sT/2)(1 + e−sT/2)
=

A

s

(1− e−sT/2)

(1 + e−sT/2)
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Laplace Transforms of Causal Repeating Functions

Another method:

x(t) = A1(t)− 2A1(t−
T

2
) + 2A1(t− T )− 2A1(t−

3T

2
) + 2A1(t− 2T )− · · ·

X(s) =
A

s
−

2A

s
e−s(T/2) +

2A

s
e−sT −

2A

s
e−s(3T/2) +

2A

s
e−s(2T ) + · · ·

=
A

s
−

2A

s
e−s(T/2)

(
1− e−s(T/2) + e−sT − e−s(3T/2) + e−s(2T ) − · · ·

)
Let

S = 1− e−s(T/2) + e−sT − e−s(3T/2) + e−s(2T ) − · · ·

−e−s(T/2)S = −e−s(T/2) + e−sT − e−s(3T/2) + e−s(2T ) − · · ·

(1 + e−s(T/2))S = 1 ⇒ S =
1

1 + e−s(T/2)

Then

X(s) =
A

s

(
1− 2e−s(T/2)

(
1

1 + e−s(T/2)

))
=

A

s

(1− e−sT/2)

(1 + e−sT/2)
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Laplace Transforms of Causal Repeating Functions

The response of the system to the causal repeating input in Laplace domain is

Y (s) = H(s)X(s) =
H(s)X(s)

1− e−sT

The roots of the system is not only the root of the denominator of the product
H(s)X(s) but also the roots of the equation

1− e−sT = 0.

It has an infinite number of roots, located at s = j2πn/T , where n is any positive or
negative integer. Then we cannot find y(t) using the inverse Laplace transforms. To
overcome this problem:

▶ Express Y (s) in the following from:

Y (s) = H(s)X1(s)
[
1 + e−sT + e−2sT + e−3sT + · · ·

]
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Laplace Transforms of Causal Repeating Functions

▶ If we just obtain the inverse Laplace transform of H(s)X1(s), then the
remaining terms are obtained by shifting in time.

▶ If we define

y1(t) = L−1 [H(s)X1(s)]

then during the interval (n− 1)T < t < nT , the output can be expressed as

y(t) = y1(t)1(t) + y1(t− T )1(t− T ) + · · ·+ y1(t− nT + T )1(t− nT + T )
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Laplace Transforms of Causal Repeating Functions

The square wave is applied to the RC circuit. The amplitude of the waveform is 20 V
and the period T is 2 sec. The switch is closed at t = 0 and the initial voltage across
the capacitor is 10 V.

−
+

vi(t)

t = 0
R = 0.5 MΩi(t)

C = 1 µF
+
v(t)

−

v(t) +RC
dv

dt
= vi(t)

(1 + sRC)V (s) = Vi(s) +RCv(0)

with the given values, RC = 0.5,
v(0) = 10, and

Vi(s) =
20(1− 2e−s + e−2)

s(1− e−2s)
Solving for V (s), the Laplace transform of the voltage across the capacitor, we obtain

V (s) =
10

s+ 2
+

40(1− 2e−s + e−2s)

s(s+ 2)(1− e−2s)
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Laplace Transforms of Causal Repeating Functions

By using a long division, we have

1− 2e−s + e−2s

1− e−2s
=

(
1− 2e−s + e−2s)(1 + e−2s + e−4s + · · ·

)
= 1− 2e−s + 2e−2s − 2e−3s + 2e−4s − · · ·

Then

V (s) =
10

s+ 2
+

40

s(s+ 2)

(
1− 2e−s + 2e−2s − 2e−3s + 2e−4s − · · ·

)
= V1(s) + Ṽ2(s)

(
1− 2e−s + 2e−2s − 2e−3s + 2e−4s − · · ·

)
= V1(s) + V2(s)

v1(t) = 10e−2t

ṽ2(t) = 20− 20e−2t

v2(t) = 20− 20e−2t − 40(1− e−2(t−1))1(t− 1)

+ 40(1− e−2(t−2))1(t− 2)− 40(1− e−2(t−3))1(t− 3) + · · ·
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Laplace Transforms of Causal Repeating Functions

If we consider one nth period, that is 2(n− 1) < t < 2n, we have for example
3 < t < 4

( 1(t) = 1(t− 1) = 1(t− 2) = 1(t− 3) = 1,1(t− 4) = 0)

v2(t) = 20− 20e−2t − 40(1− e−2(t−1)) + 40(1− e−2(t−2))− 40(1− e−2(t−3))

= −20 + 20e−2t − 40e−2t
(
1− e2 + e4 − e6

)
If n < t < n+ 1

v2(t) = (−1)n20 + 20e−2t − 40e−2t
(
1− e2 + e4 − e6 + · · ·+ (−e2)n

)
Then

v(t) = 10e−2t + (−1)n20 + 20e−2t − 40e−2t

[
1− (−e2)n+1

1− e2

]
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Laplace Transforms of Causal Repeating Functions

▶ The total response of the system during the period nT < t < (n+ 1)T can
usually be expressed in a compact form by using some algebraic properties of
geometric series.

▶ We could not easily determine the steady-state component. The problem is
caused by the fact that we cannot simply assume t to be very large and drop all
terms multiplied by negative exponentials.

▶ for example from the last example if we do that we will get a square wave as an
output, which is not correct.

▶ To find the steady-state response, one way can do as follow:
▶ Find the Laplace transform of zero-state response of the system to only

the first cycle of the repetitive input.
▶ Find the transient component from the residues at the poles of the

system transfer function. These poles must lie strictly in the left half of
the s-plane for the system to have a steady-state response.

▶ The steady-state response is

yss(t) = L−1 [H(s)X1(s)]−
n∑

i=1

Aie
−pit,

where X1(s) is the Laplace transform of the first cycle of x(t).
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Laplace Transforms of Causal Repeating Functions

From the last example we have the Laplace transform of the first cycle of vi(t) is given
by:

Vi1(s) =
20(1− 2e−s + e−2)

s

The Laplace transform of the zero-state response is by giving v(0) = 0 and

H(s) =
V (s)

Vi(s)
=

2

s+ 2

The zero-state response of the first cycle is

vs(t) = L−1 [H(s)Vi1(s)] = L−1

[
40(1− 2e−s + e−2s

s(s+ 2)

]
= 20(1− e−2t)1(t)− 40

[
1− e−2(t−1)

]
1(t− 1) + 20

[
1− e−2(t−2)

]
1(t− 2)
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Laplace Transforms of Causal Repeating Functions

To calculate the transient component of the complete (all periods) zero-state
response, we consider the residue at the pole at s = −2 as follow:

H(s)Vi(s) =
40(1− 2e−s + e−2s)

s(s+ 2)(1− e−2s)
=

A

s
+

B

s+ 2

B =
40(1− 2e−s + e−2s)

s(1− e−2s)

∣∣∣∣
s=−2

= 15.232

Then the steady-state output during the first cycle is given by

vss(t) = v1(t)−Be−2t = (20− 35.232e−2t)1(t)− 40[1− e−2(t−1)]1(t− 1), 0 < t < 2

The last term of vs(t) is equal zero during the first cycle 0 < t < 2.
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Laplace Transforms of Causal Repeating Functions

1 2 3

−15.232

15.232

0 t

v(t)
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