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Zero-Input Response (1)

To solve a differential equation, you can use a command dsolve to solve the
equation.
For an continuous-time LTI system specified by the differential equation

(D2 44D + k)y(t) = (3D 4 5) f(¢)

determine the zero-input component of the response if the initial conditions are
y0(0) = 3, and 90 (0) = —7 for two values of k: (a) 3 (b) 4 (c) 40.

syms y(t) t
Dy = diff(y, 1);
condl = y(0) == 3; cond2 = Dy(0) == -7; conds = [condl; cond2];
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sysl = diff(y,2) + 4xdiff(y,1) + 3%y == 0
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Zero-Input Response (1)

1 sys2 = diff(y,2) + 4xdiff(y,1) + 4xy == 0

2

sys2(t) = % y(t)+4% y(t)+4y(t)=0

1 sys3 = diff(y,2) + 4xdiff(y,1) + 40xy == @

2

) )
sys3(t) = Pyl y(t)+4§ y(t) +40y (t) =0

1 yl = dsolve(sysl, conds)

yl=et+2e73¢
A



Zero-Input Response (1)

1 y2 = dsolve(sys2, conds)

V2 =—e2t(t—3)

1 y3 = dsolve(sys3, conds)

e 2t (18 cos (6t) — sin (6 1))
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Zero-Input Response (1)

To plot yp respect to ¢, we can use Matlab’s code as follow:

ts = -1:0.01:10;

ylc = ylwxheaviside(t);

y2c = y2xheaviside(t);

y3c = y3xheaviside(t);

ylp = subs(ylc,t,ts); y2p = subs(y2c,t,ts); y3p = subs(y3c,t,ts);
plot(ts,ylp,ts,y2p,ts,y3p, 'linewidth', 2)

h = legend('k =3", 'k=&4', 'k=40');
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Zero-State Response y;(t)

For an LTI system specified by the differential equation
(D? +3D +2)y(t) = Df(t)
To calculate the zero-state response, we can use MATLAB to calculate as follow:
h(t) = bnd(t) + P(D)yn () 1(t)

In this case b, = 0 and the initial values of y, (t) are y,(0~) =0and y(0~) = 1.

syms y(t) t

1
2
3 Dy = diff(y,1);

4 condl = y(0) == 0; cond2 = Dy(0) == 1;

5 conds = [condl; cond2]; sys4 = diff(y,2) + 3*diff(y,1) + 2+y(t) == 0;
6 y_n = dsolve(sys4, conds)
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Zero-State Response y;(t)

1 Dy_n = diff(y_n)

Therefore
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Zero-State Response y;(t)

If f(t) = 10e~3* we have

syms y(t) t tau

Dy = diff(y, 1);

ft = 10%exp(-3*t);

sys5 = diff(y,2) + 3xdiff(y,1) + 2%y == 0

W N
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sys5(t) = y(t)+3 9

= ) +2y(t) =0
9 5 YO +2y ()

condl = y(0) == 0; cond2 = Dy(0) == 1;
conds = [condl; cond2];

y_n = dsolve(sys4, conds);

ht = diff(y_n)
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ht=2e 2t —e~t
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Zero-State Response y;(t)

1

%convolution of f(t) and h(t)
ys = int(subs(ft, tau)+subs(ht, t-tau), tau, 0, t)

ys = —5e 3¢ (02L74CL+3)

ysc = ysxheaviside(t)

ysc = —5 e~ 2t heaviside (t) (e2 t—det + 3)

W o

s = -1:0.01:10;

ysp = subs(ysc, t, ts);
plot(ts,ysp, 'linewidth', 2)
axis([-1 10 -0.5 1.3]); grid;
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Classical Method
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The last line is

ys(t) = =5~ +20e 72" — 15e 7, ¢ > 0

Finally, the total response is y(t) = yo(t) + ys(t).
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Classical Method

Solve the differential equation
(D? +3D +2)y(t) = Df(t)

for the input f(t) = 5t + 3 if y(0F) = 2 and y(0+) = 3.

syms y(t) t

f = 5%t + 3;

1

2

3 Dy = diff(y,1)

4

5 sysl = diff(y,2) + 3#diff(y,1) + 2+y == diff(f,t)

2

A0 = oy (0 +3 o y(0) + 2y () =5
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Classical Method

1 condl = y(0) == 2; cond2 = Dy(0) == 3;
2 conds = [condl; cond2];
3 y = dsolve(sysl, conds)
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