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Zero-Input Response y0(t)

To solve a differential equation, you can use a command dsolve to solve the
equation.
For an continuous-time LTI system specified by the differential equation

(D2 + 4D + k)y(t) = (3D + 5)f(t)

determine the zero-input component of the response if the initial conditions are
y0(0) = 3, and ẏ0(0) = −7 for two values of k: (a) 3 (b) 4 (c) 40.

1 syms y(t) t
2 Dy = diff(y, 1);
3 cond1 = y(0) == 3; cond2 = Dy(0) == -7; conds = [cond1; cond2];
4
5 sys1 = diff(y,2) + 4*diff(y,1) + 3*y == 0

sys1(t) = ∂2

∂t2
y (t) + 4

∂

∂t
y (t) + 3 y (t) = 0
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Zero-Input Response y0(t)

1 sys2 = diff(y,2) + 4*diff(y,1) + 4*y == 0

sys2(t) = ∂2

∂t2
y (t) + 4

∂

∂t
y (t) + 4 y (t) = 0

1 sys3 = diff(y,2) + 4*diff(y,1) + 40*y == 0

sys3(t) = ∂2

∂t2
y (t) + 4

∂

∂t
y (t) + 40 y (t) = 0

1 y1 = dsolve(sys1, conds)

y1 = e−t + 2 e−3 t
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Zero-Input Response y0(t)

1 y2 = dsolve(sys2, conds)

y2 = −e−2 t (t− 3)

1 y3 = dsolve(sys3, conds)

y3 = e−2 t (18 cos (6 t)− sin (6 t))

6
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Zero-Input Response y0(t)

To plot y0 respect to t, we can use Matlab’s code as follow:

1 ts = -1:0.01:10;
2 y1c = y1*heaviside(t);
3 y2c = y2*heaviside(t);
4 y3c = y3*heaviside(t);
5 y1p = subs(y1c,t,ts); y2p = subs(y2c,t,ts); y3p = subs(y3c,t,ts);
6 plot(ts,y1p,ts,y2p,ts,y3p, 'linewidth', 2)
7 h = legend('k =3', 'k=4', 'k=40');
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Zero-State Response ys(t)

For an LTI system specified by the differential equation

(D2 + 3D + 2)y(t) = Df(t)

To calculate the zero-state response, we can use MATLAB to calculate as follow:

h(t) = bnδ(t) + P (D)yn(t)1(t)

In this case bn = 0 and the initial values of yn(t) are yn(0−) = 0 and ẏ(0−) = 1.

1 syms y(t) t
2
3 Dy = diff(y,1);
4 cond1 = y(0) == 0; cond2 = Dy(0) == 1;
5 conds = [cond1; cond2]; sys4 = diff(y,2) + 3*diff(y,1) + 2*y(t) == 0;
6 y_n = dsolve(sys4, conds)

y_n = e−t − e−2 t
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Zero-State Response ys(t)

1 Dy_n = diff(y_n)

Dy_n = 2 e−2 t − e−t

Therefore

h(t) = 0 + (2e−2t − e−t)1(t)
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Zero-State Response ys(t)

If f(t) = 10e−3t we have

1 syms y(t) t tau
2 Dy = diff(y, 1);
3 ft = 10*exp(-3*t);
4 sys5 = diff(y,2) + 3*diff(y,1) + 2*y == 0

sys5(t) = ∂2

∂t2
y (t) + 3

∂

∂t
y (t) + 2 y (t) = 0

1 cond1 = y(0) == 0; cond2 = Dy(0) == 1;
2 conds = [cond1; cond2];
3 y_n = dsolve(sys4, conds);
4 ht = diff(y_n)

ht = 2 e−2 t − e−t
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Zero-State Response ys(t)

1 %convolution of f(t) and h(t)
2 ys = int(subs(ft, tau)*subs(ht, t-tau), tau, 0, t)

ys = −5 e−3 t
(
e2 t − 4 et + 3

)
1 ysc = ys*heaviside(t)

ysc = −5 e−3 t heaviside (t)
(
e2 t − 4 et + 3

)
1 s = -1:0.01:10;
2 ysp = subs(ysc, t, ts);
3 plot(ts,ysp, 'linewidth', 2)
4 axis([-1 10 -0.5 1.3]); grid;
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Classical Method
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The last line is

ys(t) = −5e−t + 20e−2t − 15e−3t, t ≥ 0

Finally, the total response is y(t) = y0(t) + ys(t).
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Classical Method

Solve the differential equation

(D2 + 3D + 2)y(t) = Df(t)

for the input f(t) = 5t+ 3 if y(0+) = 2 and ẏ(0+) = 3.

1 syms y(t) t
2
3 Dy = diff(y,1)
4 f = 5*t + 3;
5 sys1 = diff(y,2) + 3*diff(y,1) + 2*y == diff(f,t)

sys1(t) = ∂2

∂t2
y (t) + 3

∂

∂t
y (t) + 2 y (t) = 5
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Classical Method

1 cond1 = y(0) == 2; cond2 = Dy(0) == 3;
2 conds = [cond1; cond2];
3 y = dsolve(sys1, conds)

y = 2 e−t −
5 e−2 t

2
+

5

2

-1 0 1 2 3 4 5 6 7 8 9 10
-4

-3

-2

-1

0

1

2

3

4

13 / 14



Reference

1. Xie, W.-C., Differential Equations for Engineers, Cambridge University Press, 2010.

2. Goodwine, B., Engineering Differential Equations: Theory and Applications,
Springer, 2011.

3. Kreyszig, E., Advanced Engineering Mathematics, 9th edition, John Wiley & Sons,
Inc., 1999.

4. Lathi, B. P., Signal Processing & Linear Systems, Berkeley-Cambridge Press, 1998.

14 / 14


	Matlab

