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System modeling is an important part of the control system. The topic is how to build
mathematical models of plants and determine the plant’s response before
constructing real systems.
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Introduction to System Dynamics



Introduction to System Dynamics

Definition:
▶ A system transforms input signals into output signals (or response)
▶ A system is a function mapping input signals into output signals.

We concentrate on systems with one input and one output signal, i.e., single-input,
single-output (SISO) systems.

Notation:
▶ y = Su or y = S(u) me ans the system S acts on input signal u to produce

output signal y
▶ y = Su does not, in general, mean multiplication.
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Introduction to System Dynamics

Spring Mass System

M f(t)

x(t)

k

b

From the Newton’s law ΣF = ma, we
have

M
d2

dt2
x(t) + b

d

dt
x(t) + kx(t) = f(t)

Drag force
The drag force on an object moving through a liquid or a gas is a function of the
velocity:

D =
1

2
ρACDv2,

where ρ is the mass density of the fluid, A is the object’s cross-sectional area normal
to the relative flow, v is the object’s velocity relative to the fluid, and CD is the drag
coefficient.
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Introduction to System Dynamics

Mixer Transient Energy Balance

https://commons.wikimedia.org/wiki/
File:Agitated_vessel.svg

Using energy balance technique to
determine the dynamic equation.

mcp
dT

dt
= ṁincp
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)
− ṁoutcp

(
Tout − Tref

)
+ UA(T∞ − T )

+Ws + rV∆Hr
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Introduction to System Dynamics

Static Elements: The element is a static element if the present value of an element’s
output depends only on the present value of its input.

▶ Ex. the current flowing through a resistor depends only on the present value of
the applied voltage, or v(t) = Ri(t). The resistor is thus a static element.

▶ However, no physical element can respond instantaneously, the concept of a
static element is an approximation. It is widely used because it is simple and
can be represented in terms of algebraic equations rather than differential
equations.

Dynamic Elements: The element is a dynamic element if the present value of an
element’s output depends on the past values of its input.

▶ Ex. the present position of a bike depends on what its velocity has been from
the start.

Dynamic System is the one in which the current effects (outputs) are the result of
present and previous causes (inputs).
Static system is the one in which the current effects (outputs) depend only on current
causes (inputs).

▶ A static system contains all static elements.
▶ Any system that contains at least one dynamic element must be a dynamic

system. 5 / 38



Modelling of Systems

The modelling process of engineering system dynamics:
▶ Identifying the fundamental properties of an actual system.
▶ The minimum set of variables necessary to fully define the system configuration

is formed of the degree of freedom (DOF).
▶ The key of this selection is a schematic or diagram, which pictorially identifies

the parameters and the variables, such as the free-body diagram that
corresponds to the dynamics of the system.

▶ It is necessary to utilize an appropriate modelling procedure that will result in
the mathematical model of the system.

▶ A mathematical model describing the dynamic behavior of an engineering
system consists of a differential equation combining parameters with known
functions, unknown functions, and derivatives.

▶ The next step involves solving the mathematical model through adequate
mathematical procedures that deliver the solution, that is, expressions
(equations) of variables as functions of the system parameters and time (of
frequency), and the reflect they system response or behavior.
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Modelling of Systems



Modelling of Systems

Dynamic models are essential for understanding the system dynamics in open-loop
(manual mode) or for closed-loop (automatic) control. These models are either
derived from data (empirical) or from more fundamental relationships (first principles,
physics-based) that rely on knowledge of the process. A combination of the two
approaches is often used in practice where the form of the equations is developed
from fundamental balance equations and unknown or uncertain parameters are
adjusted to fit process data.

In engineering,
▶ there are four common balance equations from conservation principles mass,

momentum, energy, and species
▶ An alternative to physics-based models is to use input-output data to develop

empirical dynamic models such as first-order or second-order systems.
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Modelling of Systems

Actual
system

Physical
model

Mathematical
model

System
response

Simplifying
assumptions

Mathematical
procedure

Solving
algorithm

Flow in a Process Connecting an Actual Dynamic System to Its Response

1. Simplifying the problem sufficiently and applying the appropriate fundamental
principles is call modelling

2. The resulting mathematical description is called a mathematical model, or just
a model.

3. When the modelling has been finished, we need to solve the mathematical
model to obtain the required answer.
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Modeling of systems

https://blogs.nasa.gov/spacex/2019/06/25/
side-boosters-have-landed/

▶ We want to design a rocket that can
self-landing.

▶ We don’t have a rocket yet, so we
cannot experiment to obtain the
answer.

▶ There are a lot of variations in
climate during the self-landing.

▶ We need the model of the rocket to
predict its landing behavior.

▶ We can quickly simulate the model
without investing much time and
money to build the rocket.

▶ If the operations in the simulation
fail, the broken rocket doesn’t harm
life or money.
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Modeling of systems: go back to academic toy problem
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vb(t) = Kbθ̇ia(t)

θm(t)τm(t)

Armature circuit

Rotor

Fixed
field

▶ Rather than setting out to control
this motor’s speed by performing a
series of trial-and-error test.

▶ We will begin with the dynamic
system.

The mathematical model is

Jω̇(t) +Bω(t) = T (t)

▶ ω is a angular velocity of the motor
in rpm.

▶ J is a mass moment of inertia.
▶ T (t) is a torque input.
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Modeling of systems: go back to academic toy problem

Relating the electrical current i(t) to the motor’s inductance L, resistance R, velocity
ω(t) and the applied voltage v(t), we two mathematical representation of the entire
motor.

L
di(t)

dt
+Ri(t) + kbω(t) = v(t)

Jω̇(t) +Bω(t) = kii(t)

Here kb and ki are the back electromotive force (EMF) constant and the motor’s
torque constant, respectively.
To test the motor’s model we can use MATLAB\SIMSCAPE as shown below:
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Modeling of systems: go back to academic toy problem

The simulation results:
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Classical of the model

: Lumped-Parameters vs Distributed-Parameters Systems
▶ A distributed model has variables as functions of time and spatial

coordinated(s), which we can define by partial differential equations (PDEs). We
also call a distributed model an infinite-dimensional system because its
response is expressed in terms of an infinite number of coordinates.

▶ A lumped model has variables as functions of time only, which can be described
by ordinary differential equations (ODEs). We also call the lumped model a
finite-dimensional system because its response is expressed by a finite number
of coordinates.

Linear Models vs Nonlinear Models
▶ A linear model has variables that are governed by linear differential equations.

A linear differential equation about a variable is one which only involves a
linear combination of the variable and its derivatives.

mẍ+ cẋ+ kx = f,

wherem, c, and k are the mass, damping, and spring parameters of the system,
and f is an external force.
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Classical of the model

▶ A nonlinear model has variables that are governed by nonlinear differential
equations. A nonlinear differential equation about a variable is one which
involves the products and nonlinear functions of the variable and its
derivatives. A spring-mass-damper system including dry friction is described by

mẍ+ cẋ+ kx+ µNsgn(ẋ) = f,

where µ is a kinetic friction coefficient, N is a normal force, and sgn(ẋ) is the
sign function. Because sgn(ẋ) is a nonlinear function of ẋ.

Time-Invariant Models vs Time-Variant Models
▶ A time-invariant system (TI) is a system that is described by differential

equations having only constant coefficients.
▶ A time-varying system (TV) is a system that is described by differential

equations containing at least one coefficients that change with time.

mẍ+ cẋ+ kx = f (TI) mẍ+ cẋ+ (k0 + ε sinωt)x = f (TV )
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Modeling of systems

Applications of System Modelling:
▶ Control systems: robotics, mechatronics, precision engineering, etc.
▶ Mechanical systems: design active suspension systems, robot arms, etc.
▶ Electrical and Electromechanical systems: Grid-connected system, electronic

driver, mechanical conveyer, etc.
▶ Fluid systems: backhoe truck, hydraulic servomotor.
▶ Thermal systems.
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Developing Linear Models from Data



A Cantilever Bean Deflection Model

Beam

Weight f

Dial Gauge

Deflection x

The deflection of a cantilever beam is the distance its end moves in response to a
force applied at the end. The following table gives the measured deflection x that was
produced in a particular beam by the given applied force f .

Force f (lb) 0 100 200 300 400 500 600 700 800
Deflection x (in) 0 0.15 0.23 0.35 0.37 0.5 0.57 0.68 0.77

What is the model of this cantilever beam deflection?
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A Cantilever Bean Deflection Model
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▶ the function is x = af , where

a =
0.77− 0

800− 0
= 9.625× 10−4 in./lb
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A Cantilever Bean Deflection Model

Matlab code
1 f = [0 , 100 , 200 , 300 ,400 , 500 ,600 , 700 ,800 ] ;
2 de f l = [ 0 , 0 . 1 5 , 0 . 2 3 , 0 . 3 5 , 0 . 3 7 , 0 . 5 , 0 . 5 7 , 0 . 6 8 , 0 . 7 7 ] ;
3
4 a = ( de f l ( end ) − de f l ( 1 ) ) / ( f ( end ) − f ( 1 ) ) ;
5
6 def l_hat = a* f ;
7 p lo t ( f , def l , ' ko ' , f , de f l_hat )
8 x labe l ( ' Applied Force $f$ ( lb ) ' ) ;
9 y labe l ( ' De f l ec t ion $x$ ( in . ) ' ) ;

To learn how to code MATLAB please consult the MATLAB onramp at

https://matlabacademy.mathworks.com/details/matlab-onramp/gettingstarted
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Interpolation and Extrapolation

Once we have a function relating input and output,

▶ Interpolation: is a process of using the model to make predictions for
conditions that lie inside the data range of the original data.

▶ We can use the beam model to estimate the deflection when the applied
force is 550 lb.

▶ We can be fairly confident of this prediction because we have data below
and above 500 lb and we have seen that our model describes this data
very well.

▶ Extrapolation: is a process of using the model to make predictions for
conditions that lie outside the original data range.

▶ Extrapolation might be used i the beam application to predict how much
the force would be required to bend the beam 1.2 in.

▶ We must be careful when using extrapolation because we usually have no
reason to believe that the mathematical model is valid beyond the range
of the original data.

▶ For example, if we continue to bend the beam, eventually the force is no
longer proportional to the deflection, and it becomes much greater than
that predicted by the linear model.
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Linear Functions

Superposition and linear functions
▶ f : Rn → R means f is a function mapping n-vectors to numbers
▶ f satisfies superposition property if for any numbers α, β and n-vectors x, y

f(αx+ βy) = αf(x) + βf(y)

▶ a function that satisfies superposition is called linear
▶ a function that is linear plus a constant is called affine
▶ the function is affine if and only if

f(αx+ βy) = αf(x) + βf(y), α, β with α+ β = 1

▶ sometimes (ignorant) people refer to affine functions as linear

Note: if f(x) = ax+ b then

f(αx+ (1− α)y) = a (αx+ (1− α)y) + b

= αf(x)− αb+ (1− α)f(y)− (1− α)b+ b

= αf(x) + (1− α)f(y)
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Linearization

Not all element descriptions are in the form of data. Often we know the analytical
form of the model, and if the model is nonlinear, we can obtain a linear model that is
an accurate approximation over a limited range of the independent variable.
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▶ The models of many mechanical
systems involve the sine
function sin θ, which is
nonlinear.

▶ Obtain three linear
approximations of f(θ) = sin θ ,
one value near θ = 0, one near
θ = π/3 rad, and one near
θ = 2π/3 rad.

▶ The slope of the sine function is
its derivative, d sin θ/dθ = cos θ,
which is not constant.
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Linearization

▶ case A: θ = 0, the slope is cos 0 = 1, and thus the straight line passing through
the point with a slope of 1 is

f(θ) = 1(θ − 0) + sin 0 = θ

▶ case B: θ = π
3
, we have sin π

3
=

√
3
2
. The straight line passing through the point

with a slope of cos π
3
= 0.5 is

f(θ) = 0.5
(
θ −

π

3

)
+

√
3

2

▶ case C: θ = 2π
3
, we have sin 2π

3
=

√
3
2
. The straight line passing through the

point with a slope of cos 2π
3

= −0.5 is

f(θ) = −0.5

(
θ −

2π

3

)
+

√
3

2
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Linearization

The linearization can be developed with an analytical approach based on the Taylor
series.

Input x

O
u

tp
u

t
f
(
x
)

x0 x

f(x0)

f(x)

The first-order Taylor approximation of
f , near point x0 :

f̂(x) = f(x0) +

(
∂f

∂x

)
x0

(x− x0)

note: It is y = mx+ c !

If you use this technique to calculate the linear approximation of the previous
example, you will get the same results.

23 / 38



Linearization: Example

The models of many fluid systems involve the square-root function
√
h, which is

nonlinear. Obtain a linear approximation of f(h) =
√
h valid near h = 9.

f(h) = f(hr) +
d
√
h

dh

∣∣∣∣∣
hr

(h− hr),

where hr = 9 . This gives the linear approximation

f(h) =
√
9 +

1

2
h− 1

2

∣∣∣∣
hr

(h− 9) = 3 +
1

6
(h− 9)
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Basic Curve Fitting

The curve fitting is used to describe the process of finding a curve, and the function
generating the curve, to describe a given set of data. Parameter estimation is the
process of obtaining values for the parameters, or coefficients, in the function that
describes the data.
The simple three function types can often describe physical phenomena:

▶ The affine function y(x) = mx+ b. Note that y(0) = b. Ex. the linear function
describes the voltage-current relation for a resistor (v = iR) and the velocity
versus time relation for an object with constant acceleration (v = at+ v0).

▶ The power function y(x) = bxm . Note that y(0) = 0 ifm ≥ 0, and y(0) = ∞ if
m < 0. Ex. the distance d traveled by a falling object versus time is described by
a power function (d = 0.5gt2)

▶ The exponential function y(x) = b(10)mx or its equivalent form y = bemx ,
where e is the base of the natural logarithm (ln e = 1). Note that y(0) = b for
both forms. Ex. The temperature change ∆T of a cooling object can be
described by an exponential function (∆T = ∆T0ect).
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Basic Curve Fitting

▶ The affine(linear) function y = mx+ b gives a straight line when plotted on
rectilinear axes. The slope ism and the y intercept is b.

▶ The power function y = bxm gives a straight line when plotted on log-log axes.

ln(y) = ln(bxm) = ln(b) +m ln(x) ⇒ ŷ = mx̂+ b̂

where (̂·) operator means log (·).
▶ The exponential function y = bemx , give a straight line when plotted on semilog

axes with a logarithmic y axis

ln(y) = ln(bemx) = ln(b) +mx ⇒ ŷ = mx+ b̂

where (̂·) operator means log (·).
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Basic Curve Fitting
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Basic Curve Fitting

The curve fitting procedure is
▶ Examine the data near the origin. The exponential functions y = b(10)mx and

y = bem can never pass through the origin. The linear function y = mx+ b can
pass through the origin only if b = 0. The power function y = bxm can pass
through the origin but only ifm > 0.

▶ Plot the data using rectilinear scales. If it forms a straight line, then it can be

represented by the linear function, and you are finished. If you have data at

x = 0, then
1. If y(0) = 0, try the power function, or
2. If y(0) ̸= 0, try the exponential function.

If data is not given for x = 0, proceed to the next step.
▶ If you suspect a power function, plot the data using log-log scales. Only a power

function will form a straight line. If you suspect an exponential function, plot it
using semilog scales. Only an exponential function will form a straight line.
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Basic Curve Fitting

To obtain the coefficients of each function:
▶ For the linear function y = mx+ b, the slope is given by

m =
y2 − y1

x2 − x1

If we knowm, we can find b from b = y1 −mx1 .
▶ For the power function y = bxm , we select

y1 = bxm
1 and y2 = bxm

2 ⇒
y2

y1
=

(
x2

x1

)m

ln(y2)− ln(y1) = m(ln(x2)− ln(x1)) ⇒ m =
ln(y2)− ln(y1)
ln(x2)− ln(x1)

Onem is known, b can determined by y1 = bxm
1 and b = y1x

−m
1 .
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Basic Curve Fitting

To obtain the coefficients of each function:
▶ Fro the exponential function y = bemx , we can select

y1 = bemx1 and y2 = bemx2 ⇒
y2

y1
=

(
emx2

emx1

)
ln(y2)− ln(y1) = ln (emx2 )− ln (emx1 ) = m(x2 − x1)

m =
ln(y2)− ln(y1)

x2 − x1

Oncem is known, we can find b from b = y1e−mx1 .
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Basic Curve Fitting: example

Water in a glass measuring cup was allowed to cool after being heated to 204◦F. The
ambient air temperature was 70◦F. The measured water temperature at various times
is given in the following table.

Time (sec) 0 120 240 360 480 600
Temperature (◦F) 204 191 178 169 160 153

Time (sec) 720 840 960 1080 1200
Temperature (◦F) 147 141 137 132 127

Obtain a functional description of the water temperature versus time. The
temperature data is subtracted by 70◦ due to the ambient temperature offset or
∆T = T − 70◦F.
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Basic Curve Fitting: example

The data can be described by an exponential function, we plot the data on a semilog
plot, which is shown on the right hand side. The straight line has shown we can use
the exponential function to describe the relative temperature. From T = bemt with
t1 = 1200 at T1 = 127− 70 = 57 and t2 = 120 at T2 = 191− 70 = 121 then

T1 = bemt1 , T2 = bemt2 ⇒
T1

T2
= em(t1−t2)

m =
1

1200− 120
ln 57

121
= −6.9698× 10−4 b = 121e6.9698×10−4(120) = 131.5554

Thus the estimated function is

∆T = 131.5554e−6.9698×10−4t

Test = ∆T + 70 = 131.5554e−6.9698×10−4t + 70
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Basic Curve Fitting: example

Matlab code
1 t t = 0 : 1 2 0 : 1 2 0 0 ;
2 Temp = [204 , 1 9 1 , 1 78 , 169 , 160 , 1 53 , 1 4 7 , 1 4 1 , 1 3 7 , 1 3 2 , 1 2 7 ] ;
3 o f f s e t = 7 0 ;
4 TempT = Temp − o f f s e t ;
5
6 t s = 0 : 0 . 1 : 1 2 0 0 ;
7 m1 = ( log ( TempT ( end ) ) − log ( TempT ( 2 ) ) ) / ( t t ( end ) − t t ( 2 ) ) ;
8
9 b = TempT ( 2 ) *exp ( −m1* t t ( 2 ) ) ;
10 Ta = b*exp (m1 * t s ) + 7 0 ;
11
12 s ca t t e r ( t t , Temp , ' go ' , ' f i l l e d ' , ' MarkerEdgeColor ' , ' b lack ' , ' l inewidth ' , 1 ) ;

g r id ;
13 y labe l ( ' $T$ ' , ' i n t e rp r e t e r ' , ' l a t e x ' , ' f on t s i z e ' , 1 4 ) ;
14 x labe l ( ' $t$ ( sec ) ' , ' i n t e rp r e t e r ' , ' l a t e x ' , ' f on t s i z e ' , 1 4 ) ;
15 hold on
16
17 p lot ( ts , Ta , ' l inewidth ' , 2 )
18 hold o f f
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Basic Curve Fitting: example

A hole 6 mm in diameter was made in a translucent milk container. A series of marks 1
cm apart was made above the hole. While adjusting the tap flow to keep the water
height constant, the time for the outflow to fill a 250-ml cup was measured (1 ml =
10−6 m3). This was repeated for several heights. The data are given in the following
table.

Height h (cm) 11 10 9 8 7 6 5 4 3 2 1
Time t (s) 7 7.5 8 8.5 9 9.5 11 12 14 19 26

Obtain a function description of the value outflow rate f as a function of water height
h above the hole.
First, obtain the flow rate data in ml/s by dividing the 250 ml volume by the time to fill:

f =
250

t

we have

f (ml/s) 33.7 33.3 31.3 29.4 27.8 26.3 22.7 20.8 17.9 13.2 9.6
h (cm) 11 10 9 8 7 6 5 4 3 2 1
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Basic Curve Fitting: example
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The log-log plot shown that the data lie close to a straight line, so we can use the
power function to describe the flow rate as a function of height. Thus we can write

f = bhm

We use the two points from the plot (1, 9.6) and (8, 29.4). Then

f1 = bhm
1 , f2 = bhm

2 ⇒
f2

f1
=

(
h2

h1

)m

⇒ log(29.4/9.6) = m(log(8/1))

m =
log(29.4/9.6)

log(8/1)
= 0.5382 and b = 9.6(1)−0.5382 = 9.6 35 / 38



Basic Curve Fitting: example

Thus the estimated function is

f = 9.6h0.5382,

where f is the outflow rate in ml/s.
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The quality of a curve fit

Sum of the Square of the residuals (errors)

J =
n∑

i=1

[f(xi)− yi]
2

This criterion compares the quality of the curve fit for two or more functions used to
describe the same data.
Sum of the Squares of the deviation from the mean

S =
n∑

i=1

[yi − ȳ]2 ,

where ȳ is the mean value of the data set yi .
r-squared value

r2 = 1−
J

S

To accept the model the r2 must greater than 0.99.
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The quality of a curve fit

Consider the water in glass example, we have a model as

Test = 131.55e−6.97×10−4t + 70,

Using MATLAB code below

Matlab code
1 % Qual i t y of a curve f i t
2 T_r = [ 204 , 1 9 1 , 1 78 , 169 , 160 , 1 53 , 1 4 7 , 1 4 1 , 1 3 7 , 1 3 2 , 1 2 7 ] ;
3 t = 0 : 1 2 0 : 1 2 0 0 ;
4
5 T_est = 1 3 1 . 56* exp ( −6 . 9 7 e−4 * t ) + 7 0 ;
6 T_mean = mean( T_r )
7
8 J = sum ( ( T_est − T_r ) . ^ 2 )
9 S = sum ( ( T_r − T_mean ) . ^ 2 )
10 r2 = 1 − J /S

We have J = 70.56, S = 6.24× 103 , and r2 = 0.9887. The model is not good enough!
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