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Feedback Control and Sensitivity

Consider a simplified speed motor model

Ω(s)

V (s)
=

K0

τs+ 1
,

Ω(s)

τ̂l(s)
=

KlK0

τs+ 1
,

where τl(t) is a load torque, which is consider as a disturbance input, v(t) is a voltage input

and Kl , K0 are motor constants.

v(t)
K0

τs+ 1
ω(t)

Kl

τl(t)
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Open-loop Control

v(t) K0

τs+ 1
ω(t)

Kl

τl(t)

Kcωr(t)

• The controller is connected in series with the plant, and the controller input is the

desired speed ωr(t) (here we mean a step speed input).

• The steady state gain of the plant is K0 and there is no load torque (τl(t) = 0)

• At the steady state the motor speed is

ω(∞) = K0v(∞).

• By setting Kc = 1/Ko, it leads to the desired result ω(∞) = ωr(∞).
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Closed-loop Control

v(t) K0

τs+ 1
ω(t)

Kl

τl(t)

Kcωr(t)
−

• The closed-loop transfer function is

Ω(s)

Ωr(s)
=

KcKo

τs+ 1 +KcK0

• The steady state closed-loop gain is

G0 =
KcK0

1 +KcK0
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Closed-loop Control

• In steady state operation, the motor speed is

ω(∞) =
KcK0

1 +KcK0
ωr(∞)

• Therefore, in contrast to open-loop control, the closed-loop controller cannot set the

actual speed exactly to its desired value.

• The gain product KcK0 is much larger than 1, the steady state error ω(∞)− ωr(∞)

will be small (KcK0 = 100 for example leads to a 1% error).
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Uncertain Plant Parameters, Sensitivity

If the actual steady state plant gain is K0 +∆K0.

• the open-loop configuration, the motor speed at the steady state under this

assumption is

ω(∞) = (K0 +∆K0)
1

K0
ωr(∞)

• the error speed is

∆ω(∞) =
∆K0

K0
ωr(∞) ⇒

∆ω(∞)

ωr(∞)
=

∆K0

K0

The error of say 10% in the plant gain would lead to a 10% error in motor speed.

• For the closed-loop stead state gain would change to

G0 +∆G0 =
Kc (K0 +∆K0)

1 +Kc (K0 +∆K0)
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Uncertain Plant Parameters, Sensitivity

• The relative error using linear approximation: if ∆K0 is small,

∆G0 ≈
dG0

dK0
∆K0

The relative speed error is

∆ω(∞)

ωr(∞)
=

∆G0

G0
≈

(
K0

G0

dG0

dK0

)
∆K0

K0

• The factor between the relative error in plant gain and the resulting relative error in

closed-loop steady state gain is called the sensitivity of the control system, denoted by

S. We have

S =
K0

G0

dG0

dK0
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Uncertain Plant Parameters, Sensitivity

• Calculating the derivative yields

S =
K0

KcK0

1 +KcK0

Kc(1 +KcK0)−KcK0Kc

(1 +K0Kc)
2

S =
1

1 +KcK0

• When the gain product KcK0 is large, the sensitivity S is small and the effect of an

error in th eplant gain on the controlled output is reduced considerably; e.g. with

KcK0 = 100 a 10% error in plant gain leads to a 0.1% error in motor speed.
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Disturbance Rejection

We consider the effect of a load torque on the motor speed. Ideally the controller should

maintain the desired speed independent of the load.

• When the load Torque τl(t) is nonzero, the motor speed at the steady state is

ω(∞) = K0

(
1

K0
ωr(∞) +Klτl(∞)

)
= ωr(∞) +K0Klτl(∞)

• the open-loop speed error due to the load torque is

∆ωol(∞) = K0Klτl(∞)

• In the closed-loop configuration, the transfer function from τl(t) to ω(t) is

Ω(s)

τ̂l(s)
=

KlK0

τs+ 1 +KcK0

• in steady state operation we have

ω(∞) =
KcK0

1 +KcK0
ωr(∞) +

KlK0

1 +KcK0
τl(∞).
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Disturbance Rejection

• The first term on the right hand side is the motor speed that would be reached when

the load torque is zero.

• The second term is the closed-loop speed error due the load torque

∆ωcl(∞) =
KlK0

1 +KcK0
τl(∞)

• Comparing this with the open-loop result, we find

∆ωcl(∞) =
1

1 +KcK0
∆ωol or ∆ωcl(∞) = S∆ωol(∞)

• Thus, in closed loop the effect of a disturbance load on the speed is reduced by the

same factor S as the effect of plant parameter errors; if the gain product KcK0 is 100,

the closed-loop error is reduced to 1% of the open-loop error.
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Open Loop vs. Closed Loop

The performance of open-loop and closed-loop control have two different control objectives:

• the controlled output should follow a reference input as closely as possible (this is

called the tracking problem)

• the controlled output should be held at its desired value in spite of external disturbance

(this is the disturbance rejection problem).

r(t)
C(s) G(s)

y(t)

d(t)

Open-loop control configuration

r(t) e(t)
C(s) G(s)

y(t)

d(t)

−

Closed-loop control configuration

For closed-loop control configuration, we have

• tracking problem (d(t) = 0), Y (s) =
G(s)C(s)

1 +G(s)C(s)
R(s)

• disturbance rejection problem (r(t) = 0), Y (s) =
G(s)

1 +G(s)C(s)
D(s)

INC 341 Feedback Control Systems:, Lecture 7 Feedback Control J 11/41 I }



Types of Feedback

In this section, three basic types of feedback are introduced: proportional feedback,

derivative feedback and integral feedback.

r(t) e(t)
C(s)

u(t)
G(s)

y(t)

−

Proportional Feedback: The control input is linearly proportional to the control error. The

control law is

u(t) = Kp (r(t)− y(t)) = Kpe(t).

Consider the transient behaviour. Assume that the plant is a second order system with

transfer function

G(s) =
1

s2 + a1s+ a0

The controller is a proportional gain, i.e. C(s) = Kp.
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Types of Feedback
Proportional gain

The closed-loop transfer function is

Gcl(s) =
Y (s)

R(s)
=

KP

s2 + a1s+ a0 +KP
,

Here, a0 is replaced by a0 +KP . Comparing this with the standard form of the

characteristic equation of a second order system

s2 + 2ζωns+ ω2
n = 0

we see that the effect of Kp apart from the steady state gain in a change of the natural

frequency ωn.

Assuming that a0 = 0 , the closed-loop poles are

s1,2 = −
a1

2
±

√(a1

2

)2
−KP .
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Types of Feedback
Proportional gain

Im

ReXX X

X

X

• the location of the poles for different values of KP shown in Figure above.

• When KP = 0, the roots are s1 = 0 and s2 = −a1, which are the open-loop poles of

the plant without control.

• When KP is increased, the poles move towards each other along the negative real axis,

and for KP = a21/4 they meet at s = −a1/2.
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Types of Feedback
Proportional gain

• When KP is further increased, the poles become complex

s1,2 = −
a1

2
± j

√
KP −

(a1

2

)2

with real part −a1/2, and the imaginary part increasing with KP . When KP = a21/2,

the poles are

s1,2 = −
a1

2
± j

a1

2

and the angle between the poles and the imaginary axis is 45◦.
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Types of Feedback
Proportional gain

Im

ReXX X

X

X

Im

Re

X

X

θ

• If a0 ̸= 0, we have to distinguish two cases:

• the open-loop poles can be real or complex.

• In both cases, the behaviour of the closed-loop poles is similar to that when a0 = 0;

• From a steady state point of view, the feedback gain should be large in order to make

the error small.

• However, the higher gain KP leads to a small angel θ between poles and imaginary

axis. Since sin θ = ζ, therefore a large KP leads to a poor transient response with low

damping ratio, large peak overshoot and oscillation.
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Types of Feedback
Proportional plus Derivative Feedback

The control law for proportional plus derivative feedback (also known as PD control) is

u(t) = KP (e(t) + TD ė(t)) ,

where e = r − y is the controller error. Taking Laplace transforms, we have

U(s) = KP (1 + TDs)E(s)

thus the controller transfer function is

C(s) = KP (1 + TDs) .

The parameter TD is called the derivative time.
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Types of Feedback
Proportional plus Derivative Feedback

Consider the plant with transfer function G(s) =
1

s2 + a1s+ a0

r(t) e(t)
C(s)

u(t)
G(s)

y(t)

−

The closed-loop transfer function of the feedback system is

Gcl(s) =
KP (1 + TDs)

s2 + a1s+ a0 +KP (1 + TDs)
.

The characteristic equation is

s2 + (a1 +KPTD)s+ a0 +KP = 0,

It shows an additional degree of freedom in design offered by PD control: the KP can still be

used to reduce steady state error and to change the natural frequency. While, the TD can be

used to change the damping ratio independently of the natural frequency.
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Types of Feedback
Integral Feedback

We use integral feedback to bring the steady state error to zero. Consider the closed-loop

steady state gain from r(t) to y(t) from

Gcl(s) =
Y (s)

R(s)
=

KP

s2 + a1s+ a0 +KP
, Gcl(0) =

KP

a0 +KP
→ 1 as KP → ∞

The steady state error under proportional feedback becomes zero only when the feedback

gain becomes infinite.

• The gain needs to be infinite only in steady state, i.e. when s = 0. If the gain is

infinite for s = 0 but finite for s ̸= 0, a zero steady state error can be achieved while

avoiding undesirable effects on the transient response.

• To do this, we have to include a factor 1/s in the controller transfer function.

Consider the controller transfer function

C(s) = KP
1

TIs
⇒ C(0) = ∞

U(s) =
KP

TIs
E(s) ⇒ u(t) =

KP

TI

∫ t

t0

e(τ)dτ

The parameter TI is called the integral time or reset time.
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Types of Feedback
Integral Feedback

To study the effect of integral feedback on the closed-loop behaviour, we consider the first

order plant model

G(s) =
K0

τs+ 1

By using C(s) = KP
1

TIs
, the closed-loop transfer function is

Gcl(s) =
Y (s)

R(s)
=

KPKo

TIs(τs+ 1) +KPK0

and setting s = 0 shows that Gcl(0) =
KPK0

KPK0
= 1, thus y(t) = r(t) as t → ∞, i.e. the

steady state error is indeed zero. The characteristic equation is

s2 +
1

τ
s+

KPK0

TIτ
= 0

Increasing the controller gain KP /TI leads to a faster decay of the steady state error, but

the characteristic equation shows that increasing this gain also leads to a low damping ratio.
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Types of Feedback
PID Control

e(t) KP
1

TIs

1

TDs

u(t)

PID Controller

Combining proportional, integral and derivative feedback leads to the control law

u(t) = KP

(
e(t) +

1

TI

∫ t

t0

e(τ)dτ + TD ė(t)

)
.

The transfer function of this controller is

C(s) = KP

(
1 + TDs+

1

TIs

)
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Types of Feedback
PID Control

PID control was developed in the 1930s and has been widely used since.

• Most commercially available industrial controllers today are of this type.

• PID control is a controller structure! There are more than 100 variations.

• There are three basic design parameters: proportional gain, integral time and derivative

time

• These parameters are the tuning knobs of a PID controller.

• a small integral time TI brings the steady state error quickly to zero, but at the

same time reduces the damping ratio;

• increasing TD increases the damping ratio,

• increasing KP increases the natural frequency and thus the speed of the

response.
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Types of Feedback
PID Control

Consider a second order system with

transfer function

G(s) =
1

s2 + 0.7s+ 1

r(t) e(t)
C(s)

u(t)
G(s)

y(t)

−

P control: KP = 1

PI control: KP = 1, TI = 2

PID control: KP = 1, TD = 1, TI = 2
0 2 4 6 8 10 12 14 16 18 20

Time (sec)

0

0.2

0.4

0.6

0.8

1

1.2

A
m

pl
itu

de
P
PI
PID
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Types of Feedback
PID Control: Ziegle-Nichols Tuning method

Type of controller Ziegler-Nichols Gains

P KP = 1/a, TI = ∞, TD = 0

PI KP = 0.9/a, TI = 3L, TD = 0

PID KP = 1.2/a, TI = 2L, TD = L/2
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Steady State Tracking Error
Steady State Error to a Ramp Input

Consider a closed-loop system shown in Figure below

r(t) e(t)
C(s)

u(t)
G(s)

y(t)

−

Assuming that C(s) = Kp and r(t) is a step input

case 1:

G(s) =
K0

τs+ 1
, Gcl(s) =

KpK0

τs+ 1 +KpK0
, Gcl(0) =

KpK0

1 +KpK0
̸= 1, ess(∞) ̸= 0

case 2:

G(s) =
K0

s(τs+ 1)
, Gcl(s) =

KpK0

s(τs+ 1) +KpK0
, Gcl(0) =

KpK0

KpK0
= 1, ess(∞) = 0

It is obviously, the factor 1/s in the forward path enables the feedback system to reach a

constant setpoint with zero steady state error.
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Steady State Tracking Error
Steady State Error to a Ramp Input

The unit ramp input is defined by r(t) = t1(t). We use a ramp input as reference when a

position control system is required to track an object that is moving with constant velocity.

The closed-loop transfer function from the reference input r(t) to the error signal e(t) is

E(s)

R(s)
=

1

1 + L(s)
, where L(s) = C(s)G(s)

Let C(s) = Kp, and G(s) = K0/s(τs+ 1) we have

L(s) = KpG(s) =
KpK0

s(τs+ 1)

From the factor 1/s of G(s) it is obvious that the feedback system can follow a step change

with zero steady state error.

Consider the ramp input. The Laplace transform of the unit ramp is 1/s2, thus the error to a

unit ramp input is

E(s) =
1

1 + L(s)
R(s) =

s(τs+ 1)

s(τs+ 1) +KpK0

1

s2
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Steady State Tracking Error
Steady State Error to a Ramp Input

The steady state error is

ess(∞) = lim
s→0

sE(s) = s
s(τs+ 1)

s(τs+ 1) +KpK0

1

s2

=
1

KpK0
̸= 0

Hence, the feedback system can follow a ramp input only with a nonzero steady state error,

and the error is small when the gain product KpK0 is large.

Consider a plant with transfer function

G(s) =
(s+ 3)2

s2(s+ 1)

With proportional feedback, we have

L(s) =
Kp(s+ 3)2

s2(s+ 1)
, ess(∞) = lim

s→0
s

s2(s+ 1)

s2(s+ 1) +Kp(s+ 3)2
1

s2
= 0.
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System Types

System Types

Consider the feedback system

r(t) e(t)
L(s)

y(t)

−

If k is the largest integer such that the transfer function L(s) can be written in the form

L(s) =
nL(s)

skdL(s)

i.e. if the denominator has a factor sk, then this feedback system is called a type k system.

In this course, we consider only a type 0, 1, 2 systems.
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System Types
Position Error Constant

The position error constant of the considered feedback system is defined as

Kpos = lim
s→0

L(s) = lim
s→0

nL(s)

skdL(s)

Because the steady state error to a unit step input is given by

ess(∞) = lim
s→0

sE(s) = lim
s→0

s
1

1 + L(s)

1

s
=

1

1 + lims→0 L(s)
,

The steady state error (in response to a

unit step) in terms of the position error

constant is

ess(∞) =
1

1 +Kpos

.

The position error for type 0, type 1 and

type 2 systems.

Type Kpos ess(∞)

0 L(0)
1

1 +Kpos

1 ∞ 0

2 ∞ 0
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System Types
Velocity Error Constant

The velocity error constant of the considered feedback system is defined as

Kvel = lim
s→0

sL(s) = lim
s→0

nL(s)

sk−1dL(s)

Therefor the steady state error to a unit ramp input is

ess(∞) = lim
s→0

sE(s) = lim
s→0

s
1

1 + L(s)

1

s2
= lim

s→0

1

s+ sL(s)
=

1

lims→0 sL(s)
=

1

Kvel
.

The position error for type 0, type 1 and type 2 systems.

Type Kvel ess(∞)

0 0 ∞

1
nL(0)

dL(0)

1

Kvel

2 ∞ 0
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System Types
Velocity Error Constant

0 1 2 3 4 5 6 7 8 9 10

Time (sec)

0
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m
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itu
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Ramp
Type 0
Type 1
Type 2

INC 341 Feedback Control Systems:, Lecture 7 Feedback Control J 31/41 I }



Stability

Definition:

• A system is stable if

• the natural response approaches zero as t → ∞
• for every bounded input the output is also bounded as t → ∞

• A system is unstable if

• the natural response approaches infinity as t → ∞
• for every bounded input the output is unbounded as t → ∞

• A system is marginally stable if

• the natural response remains constant or oscillates
• there is at least one bounded input for which the output oscillates

The easiest to check the stability of the system is checking whether the system has no right

half-plane poles. For high order system, we can use computer software such as Matlab or

Scilab to check the roots of the characteristic polynomial of the considered system by using a

command roots.
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Stability
Routh’s criterion

r(t) e(t) 10(s+ 2)

s(s+ 4)(s+ 6)(s+ 8)(s+ 1)

y(t)

−

• Is the system above stable?

• The closed-loop transfer function of the system is

Tyr =
10(s+ 2)

s(s+ 4)(s+ 6)(s+ 8)(s+ 1) + 10(s+ 2)

=
10(s+ 2)

s5 + 28s4 + 284s3 + 1232s2 + 1930s+ 20

• simply use a command roots to check the pole locations.

• Routh’s criterion can be used to check stability by simple calculations, without

explicitly computing the poles.
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Stability
Routh’s criterion

Consider a system

G(s) =
bmsm + bm−1sm−1 + . . .+ b1s+ b0

sn + an−1sn−1 + . . .+ a1s+ a0
=

b(s)

a(s)

• The stability of the system is determined by the roots of the characteristic equation

a(s) = sn + an−1s
n−1 + . . .+ a1s+ a0 = 0

• the necessary condition for stability, but it is not sufficient is all coefficients of the

characteristic polynomial must be positive. If G(s) is stable, all coefficients are

positive, and if one or more coefficients are negative or zero, the system is unstable.

• the necessary and sufficient condition for stability is called the Routh’s criterion. This

test is based on the so-called Routh array
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Stability
Routh’s criterion

The Routh array is as follow:

sn 1 an−2 an−4 an−6 0

sn−1 an−1 an−3 an−5 an−7 0

c1 c2 c3 0

d1 d2 d3 0

e1 d2 0

f1 f2 0

g1 0

h1

Here it is assumed that an−7 is the last

coefficient (i.e. n = 7)

The subsequent rows are computed as

follows:

c1 =

−
∣∣∣∣ 1 an−2

an−1 an−3

∣∣∣∣
an−1

=
an−1an−2 − an−3

an−1

c2 =

−
∣∣∣∣ 1 an−4

an−1 an−5

∣∣∣∣
an−1

=
an−1an−4 − an−5

an−1

c3 =

−
∣∣∣∣ 1 an−6

an−1 an−7

∣∣∣∣
an−1

=
an−1an−6 − an−7

an−1

c4 =

−
∣∣∣∣ 1 0

an−1 0

∣∣∣∣
an−1

= 0
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Stability
Routh’s criterion

d1 =

−
∣∣∣∣an−1 an−3

c1 c2

∣∣∣∣
c1

=
c1an−3 − c2an−1

c1

d2 =

−
∣∣∣∣an−1 an−5

c1 c3

∣∣∣∣
c1

=
c1an−5 − c3an−1

c1

• The array terminates with n+ 1 rows, and sufficient condition for stability is that all

elements in the first column are positive.

• If not all elements in the first column are positive, then the number of unstable poles is

equal to the number of sign changes.
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Routh’s criterion
example

Is the system with denominator polynomial s3 + 2s2 + s+ 4 = 0 stable? Form the Routh

array

s3 1 1 0

s2 2 4 0

s1 c1 0

s0 d1

c1 =

−
∣∣∣∣1 1

2 4

∣∣∣∣
2

=
2− 4

2
= −1

d1 =

−
∣∣∣∣ 2 4

−1 0

∣∣∣∣
−1

=
−4− 0

−1
= 4

• The elements in the first column (1, 2,−1, 4) show two sign change, indicating two

unstable roots.

• By calculating, the roots are

s1,2 = 0.16± j1.3

s3 = −2.3

• The system is unstable.
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Routh’s criterion
example

Consider the polynomial s3 + 2s2 + 4s+ 4 = 0. Form the Routh array

s3 1 4 0

s2 2 4 0

s1 c1 0

s0 d1

c1 =

−
∣∣∣∣1 4

2 4

∣∣∣∣
2

=
−4 + 8

2
= 2

d1 =

−
∣∣∣∣2 4

2 0

∣∣∣∣
2

=
−0 + 8

2
= 4

• All elements in the first column are positive, indicating that the system is stable.

• By calculating, the roots are

s1,2 = −0.35± j1.7

s3 = −1.3

• The system is stable.
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Routh’s criterion
example

The Routh array can also be used to calculate the stability range of feedback gains. Consider

the feedback system shown in Figure below:

r(t) e(t)
Kp

u(t) s+ 1

s(s− 1)(s+ 4)

y(t)

−

The closed-loop transfer function is

Y (s)

R(s)
=

Kp(s+ 1)

s(s− 1)(s+ 4) +Kp(s+ 1)

• The plant has an unstable pole at s = 1

• We are interested in the range of values of Kp that make the closed-loop system stable.
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Routh’s criterion
example

From the characteristic equation

s3 + 3s2 + (Kp − 4)s+Kp = 0

The Routh array is

s3 1 Kp − 4 0

s2 3 Kp 0

s1 c1 0

s0 d1

c1 =
3(Kp − 4)−Kp

3
=

2Kp − 12

3

d1 =
c1Kp − 0

c1
= Kp

The closed-loop system is stable if and only if all elements in the first column are positive.

• This requires Kp > 0 and

3

2
Kp − 4 > 0

• Therefore the closed-loop system is stable if and only if Kp > 6.
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