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a Motivated Example

Consider a system ÿ(t) + 5ẏ(t) + 4y(t) = u(t) where all initial conditions are zero and
u(t) = 2e−2t

1(t).
Taking the Laplace transform of both sides, we get

s2Y (s) + 5sY (s) + 4Y (s) =
2

s+ 2

Y (s) =
2

(s+ 2)(s+ 1)(s+ 4)
= −

1

s+ 2
+

2/3

s+ 1
+

1/3

s+ 4
.

Therefore, the time function is given by

y(t) =

(
−e−2t +

2

3
e−t +

1

3
e−4t

)
1(t).

It is not difficult to see that:

• the term s+ 1 produced a decaying y = C1e−t

• the term s+ 2 produced a decaying y = C2e−2t

• the term s+ 4 produced a decaying y = C3e−4t
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Poles and Zeros of Transfer Functions

A transfer function can be described either as a two polynomials in s,

G(s) =
b1sm + b2sm−1 + · · ·+ bm+1

sn + a1sn−1 + · · ·+ an
=

N(s)

D(s)

or as a ratio in factored zero pole form

G(s) = K

i=1∏
m

(s− zi)

i=1∏
n

(s− pi)

• K is called the transfer function gain.

• The roots of the numerator z1, z2, . . . , zm are called the finite zeros of the system.

• The roots of the denominator p1, p2, . . . , pm are called the poles of the system.
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Poles of Transfer Functions

Consider a system

G(s) =
b1sm + b2sm−1 + · · ·+ bm+1

sn + a1sn−1 + · · ·+ an
=

N(s)

D(s)

poles

The values of s at which the denominator of G(s) takes the value zero, and therefore at

which G(s) becomes infinite, are called the poles of the transfer function G(s).

• The locations of the poles in the complex plane determine the dynamic behaviour of

the system

• the denominator polynomial of the transfer function is call the characteristic

polynomial.

• Setting the characteristic polynomial to zero yields the characteristic equation.
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Poles of Transfer Functions
Example

Consider a system governed by the differential equation

ÿ(t) + 5ẏ(t) + 6y(t) = 6u(t)

If u(t) = 1(t), the transfer function is

G(s) =
6

s(s+ 2)(s+ 3)
.

The system has three poles at 0,−2, and −3. Using partial fractions we have

Y (s) =
6

s(s+ 2)(s+ 3)
=

1

s
−

3

s+ 2
+

2

s+ 3
,

and the plant response to a step input is

y(t) =

{
1− 3e−2t + 2e−3t , t ≥ 0

0 , t < 0.
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Poles of Transfer Functions
Example: Components of step response
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y1(t) = 1(t)

y2(t) = 2e−3t

y3(t) = 3e−2t
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Poles of Transfer Functions
Example: Components of step response
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• y1(t) is the steady state response of the plant to the step change.

• The exponentials y2(t) and y3(t) are components of the transient response, or the
characteristic response.
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Poles of Transfer Functions
Example

Consider a system with transfer function

G(s) =
10

s2 + 2s+ 17

The poles are located at s = −1± j4. Applying a unit step input, and expanding the
resulting output Y (s) in partial fractions yields

Y (s) =
10

s(s2 + 2s+ 17)
=

A

s
+

Bs+ C

(s+ 1)2 + 42

=
0.59

s
−

0.59s− 1.76

(s+ 1)2 + 42
=

0.59

s
−

0.59s

(s+ 1)2 + 42
− 0.1534

4

(s+ 1)2 + 42

The inverse Laplace is

y(t) =
(
0.59− 0.59e−t cos(4t)− 0.1534e−t sin(4t)

)
1(t)

=
(
0.59− 0.6096e−t cos(4t− 14.57◦)

)
1(t)

From the roots of s(s2 + 2s+ 17), the system has three poles at 0, and −1± j4.
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Poles of Transfer Functions
Example
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Poles of Transfer Functions
Example
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Final Value Theorem

If a signal x(t) converges to a finite, constant value as t → ∞, this value can be obtained
from the Laplace transform X(s). To see this, take the limit of the Laplace transform of
d
dt
x(t) as s → 0

lim
s→0

∫ ∞

0

(
d

dt
x(t)

)
e−stdt = lim

s→0
(sX(s)− x(0))

x(t)

∣∣∣∣∞
0

= x(∞)− x(0) = lim
s→0

sX(s)− x(0)

x(∞) = lim
s→0

sX(s)

Final Value Theorem

Assuming lim
t→∞

x(t) exists, we have

lim
t→∞

x(t) = lim
s→0

sX(s)

or

x(∞) = lim
s→0

sX(s)
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Final Value Theorem
Static Gain

In general, we have for the step response

Y (s) = G(s)
1

s

and for its steady state value

lim
t→∞

y(t) = lim
s→0

sG(s)
1

s
= lim

s→0
G(s).

Thus, the value of G(0) - if it exists - represents the static gain (also referred gain or DC
gain) of the system.
Example:

G(s) =
10

s2 + 2s+ 17

The gain of the step is

lim
s→0

G(s) = 10/17 = 0.59
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Pole Locations and Stability

• The transfer function G(s) contains information about both steady state and transient

behaviour:

• if it exists, the static gain is lim
s→0

G(s)

• the transient response is determined by the poles of the transfer function.

• The n poles of a plant described by an nth order linear differential equation are either
real or come in complex conjugate pairs, so the transfer function can be written as a
sum of n terms

G(s) =
C1

s− p1
+

C2

s− p2
+ . . .+

Cν

s− pν
+

C̄ν

s− p̄ν

• For a real, negative pole at p = σ < 0, the exponential function ept decays with
time constant 1/σ. If a real pole is positive, the response grows exponentially
with time; a system having such a pole is said to be unstable.

• For a complex pole pair at p = σ ± jω, the transient response has the form
Aeσt cos(ωt+ ϕ), it is an oscillation with frequency ω and a time-varying
amplitude. If the real part σ is negative, the amplitude of the oscillation decays
with time constant 1/σ, and if σ is positive, the amplitude grows exponentially
with time and a system is unstable.

• If σ is zero, the amplitude neither grows nor decays, and the system is said to be
marginally stable.
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Pole Locations and Stability
Complex Plane
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Pole and zero on a complex plane
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Pole Locations and Stability
Components of the transient response corresponding to different pole locations
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First order system

A general 1st-order system G(s) = b0/(s+ a0). The response is characterized by the static

gain b0/a0, and by the time constant τ = 1/a0, which is the time it takes the output to

reach 63.2% of its steady state value.

t

y(t)

b0

a0

b0

a0

(
1 − e

−1
)

1

a0
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Second order systems

The second order system have the form

G(s) =
b0

s2 + a1s+ a0
.

To investigate the properties of second order systems, we rewrite above equation in terms of

new parameters that are more directly related to the dynamic behaviour than the coefficient

of the differential equations. These parameters are:

• the static gain K = G(0), which is easily seen to be b0/a0,

• the natural frequency ωn, defined as ωn =
√
a0,

• the damping ratio ζ, defined as ζ = a1/(2ωn).

The result is

G(s) = K
ω2
n

s2 + 2ζωns+ ω2
n

We will discuss the influence of the natural frequency and the damping ratio on the system

dynamics by investigating the step response of the system.
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Second order systems
Damping Ratio

To study the effect of the damping ratio, we assume that the natural frequency is 1; thus we

have

G(s) = K
1

s2 + 2ζs+ 1
.

The poles of this transfer function are the solutions of the characteristic equation

s2 + 2ζs+ 1 = 0, ⇒ s1,2 = −ζ ± j
√

1− ζ2.

• For ζ = 0, we have a complex conjugate pole pair on the imaginary axis at s1,2 = ±j.

• For ζ = 1, both poles are at s1,2 = −1.

• For values of ζ between 0 and 1, the pole are located on a circle of radius 1.

• As ζ is increased from 0 to 1, the poles move from ±j to −1.

• For ζ > 1, both poles are real and when ζ is increased from 1 to ∞ one pole moves

left towards −∞ and the other one moves right towards 0.
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Second order systems
Damping Ratio
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Poles of G(s) = K 1
s2+2ζs+1

when ωn = 1.
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Second order systems
Damping Ratio

Using the results of the previous section, we can infer the dynamic behaviour in time domain

from the pole locations.

• When the damping ratio is zero, the transient response is pure oscillation -

corresponding to a pole pair on the imaginary axis.

• When the damping ratio is greater than or equal to 1, we have exponential decay,

determined by a pair of real poles.

• For damping ratios between zero and one, the transient response contains both

oscillation and decay: the rate of decay is determined by the real part −ζ of the poles,

and the frequency of oscillation by the imaginary part ±j
√

1− ζ2.
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Second order systems
Damping Ratio
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Second order systems
Natural Frequency

In this study, ωn takes any positive value. Then the transfer function can be transformed

into the simpler form by frequency scaling:

G(s) = K
1(

s
ωn

)2
+ 2ζ s

ωn
+ 1

Actually this is the same transfer function as the previous one, except for the fact that the

complex variable s is replaced by the normalized variable s/ωn. Let s′ = s/ωn, then the

results on the damping ratio discussed above are valid for any value of ωn by replacing G(s)

by

G′(s′) = K
1

(s′)2 + 2ζ(s′) + 1

To revert from s′ to s we need to multiply s′ by ωn. This time every parameters are

multiplied by ωn, the poles are now located on a circle of radius ωn. The real part of the

poles is −ωnζ, and the imaginary part is ωd = ωn

√
1− ζ2. The quantity ωd is the

frequency of the damped oscillation, it is called the damped natural frequency.
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Second order systems
Natural frequency
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Second order systems
Natural frequency
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Second order systems
Natural frequency

• In time domain, the natural frequency determines the time scale of the response.

• In the previous figure, the step responses of the plant with ωn = 1.

• For the lightly damped response with ζ = 0.3, the damped natural frequency ωd is

close to the natural frequency ωn = 1.

• It can be seen, from the step response, that the item between the first and second

peak is close to 2π.

• If we use the plant with the same damping ratio ζ = 0.3 but ωn = 3. We will have the

decay rate and frequency of oscillation are three times faster, which can be expected

from the pole locations.
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Time Domain Specification

When we design controllers for seconder systems, the requirements are most often expressed

in terms of the desired closed-loop step response. Typical requirements are concerned with

the speed of the response, the overshoot of the response, and the time it takes for oscillation

to die out. Three parameters that are often used to measure these quantities are listed

below:

• the peak overshoot Mp

• the rise time tr

• the setting time ts

The rise time is a measure of the initial speed of the response; peak overshoot and settling

time are measures of amplitude and decay rate of the oscillation in the transient response.
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Time Domain Specification

Time-domain specifications for the step response
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Time Domain Specification
Peak Overshoot

The peak overshoot

Mp =
ymax − yss

yss

is a relative measure; for a system with transfer function

G(s) = K
ωn

s2 + 2ζωns+ ω2
n

its value can be computed by setting the time derivative of the response to zero. The result

in term of percent is

%Mp = e
− πζ√

1−ζ2 × 100

The peak overshoot can be approximated as a linear approximation

%Mp ≈
(
1−

ζ

0.6

)
× 100
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Time Domain Specification
Peak Overshoot
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Time Domain Specification
Rise Time

Rise Time

• We define the rise time as the time it takes the output to move from 10% to 90% of

its steady state value.

• A rough estimate of the rise time can be obtained from the step response.

• For damping ratios of 0.7 and less, the rise times do not vary significantly.

• The damping ratio 0.5 corresponds to a rise time of approximately 1.7

• Taking the average (recalling that this value is valid only for ωn = 1) leads to the

estimate

tr ≈
1.7

ωn
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Time Domain Specification
Settling Time

Settling Time

• We define the settling time as the time ts at which the output oscillation has decayed

to a point where the deviation from its steady state value remains less that 1%, i.e.∣∣∣∣y(t)− yss

yss

∣∣∣∣ < 0.01, ∀t ≥ ts

• The settling time can be defined for different levels of steady state error; in this course

however we will use the 1% settling time throughout.

• To estimate the settling time of a second order system, we observe that the oscillation

in the transient response decays as e−ωnζt .

• Allowing a tolerance of 1%, the settling time ts can be estimated by solving

e−ωnζts = 0.01 for ts, which gives

ts ≈
4.6

ζωn
=

4.6

σ
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Time Domain Specification
Example

Consider a system with

G(s) =
10

s2 + 2s+ 17
.

It is straightforward to rewrite this transfer function in the general form as

G(s) =
1

1.7

17

s2 + 2(0.24)(4.12)s+ 17

thus we have K = 0.59, ωn = 4.1 and ζ = 0.24. Using the above approximations yields the

estimates

%Mp ≈ 60% ⇒ Mp = 0.6(1/1.7) = 0.354, tr ≈ 0.41, ts ≈ 4.6
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