
INC 341 Feedback Control Systems:
Lecture 2 Transfer Function of Dynamic Systems I

Asst. Prof. Dr.-Ing. Sudchai Boonto

Department of Control Systems and Instrumentation Engineering
King Mongkut’s University of Technology Thonburi



Learning Outcomes

After finishing this lecture, the student should be able to:

1. Find the Laplace transform of time functions and the inverse Laplace transform.

2. Find the transfer function from a ODE and solve the ODE using the transfer function.

3. Find the transfer function from LTI electrical networks.

4. Find the transfer function from LTI translational mechanical systems.

5. Find the transfer function from LTI rotational mechanical systems.
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Response by Convolution

There are two analytical techniques can be applied to Linear time-invariant systems (LTIs):

• the principle of superposition

• Using the convolution of the input with the unit impulse response of the system to
determine the response of LTI systems.

Superposition

The homogeneity and additivity properties together are called the superposition principle. A
linear function is one that satisfies the properties of superposition. Which is defined as

f(x1 + x2) = f(x1) + f(x2) = f1 + f2, Additivity

f(ax) = af(x) ∀a ∈ R, Homogeneity

Total response

The total response of the LTI system with all zero initial conditions is

y(t) =

∫ ∞

−∞
u(τ)h(t− τ)dτ = u(t) ∗ h(t),

whereh(τ) is the impulse response and u(t) is the system input.

INC 341 Feedback Control Systems:, Lecture 2 Transfer Function of Dynamic Systems I J 3/42 I }



Response by Convolution
Example

Superposition Example:
Consider the first order system

ẏ + ky = u

Show that the superposition holds for the system.
Let y1 and y2 are the response to the inputs u1 and u2. Multiply the first response with α1

and the second with α2, we have

k1ẏ1 + α1ky1 = α1u1

k2ẏ2 + α2ky2 = α2u2

Adding them yields

d

dt
[α1y1 + α2y2] + k [α1y1 + α2y2] = α1u1 + α2u2

Therefor, when the input is k1u1 + k2u2, the system response is k1y1 + k2y2 .
Consequently, the system satisfy the superposition.
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Response by Convolution
Example

Convolution Example:
Consider the impulse response of the first-order system

h(t) = e−kt
1(t)

The response to a general input is given by the convolution of the impulse response and the
input:

y(t) =

∫ ∞

−∞
h(τ)u(t− τ)dτ

=

∫ ∞

−∞
e−kτ

1(t)u(t− τ)dτ

=

∫ ∞

0
e−kτu(t− τ)dτ

If u(t) is also a unit-step signal, we have

y(t) =

∫ ∞

0
e−kτ

1(t− τ)dτ =

∫ t

0
e−kτdτ =

1

k

[
1− e−kt

]
, t ≥ 0
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Laplace Transform Review

The (unilateral) Laplace transform is defined as

L [f(t)] = F (s) =

∫ ∞

0−
f(t)e−stdt,

where s = σ + jω, a complex variable.

Example:

L [1(t)] =

∫ ∞

0−
1(t)e−stdt

=

∫ ∞

0
e−stdt = −

1

s
e−st

∣∣∣∣∞
0−

=
1

s

The inverse Laplace transform is defined as

L−1 [F (s)] =
1

2πj

∫ σ+j∞

σ−j∞
F (s)estds

= f(t)u(t)

Note:
Using such formula is tedious. Most of
the engineer use a Table with a partial
fraction method instead.
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Laplace Transform Review
Examples

Ramp function
For the ramp signal f(t) = bt1(t), we have

F (s) =

∫ ∞

0
bte−stdt =

[
−
bte−st

s
−

be−st

s2

]∞
0

=
b

s2
,

where we used the technique of integration by parts,∫
udv = uv −

∫
vdu

with u = bt and dv = e−stdt.

Impulse function
For the impulse function δ(t), we have

F (s) =

∫ ∞

0−
δ(t)e−stdt = e−s0 = 1,

by sampling property of the impulse function.
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Laplace Transform Review
Examples

Sinusoid function
Find the laplace transform of the sinusoid function.

L [sinωt] =

∫ ∞

0
(sinωt)e−stdt

Using the relation

sinωt =

(
ejωt − e−jωt

2j

)
e−stdt

=
1

2j

∫ ∞

0

(
e(jω−s)t − e−(jω+s)t

)
dt

=
ω

s2 + ω2
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Laplace Transform Review
Properties of Laplace Transform

• Superposition: Since the Laplace transform is linear, then

L [αf1(t) + βf2(t)] = αF1(s) + βF2(s)

and

L [αf(t)] = αF (s)

• Time Delay: Suppose a function f1(t) = f(t− T ), which is delayed by T > 0, then

F1(s) =

∫ ∞

0
f(t− T )e−stdt = e−sTF (s)

• Time Scaling: Suppose a function f1(t) = f(at), where t is scaled bya factor a, we
have

F1(s) =

∫ ∞

0
f(at)e−stdt =

1

|a|
F
( s

a

)
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Laplace Transform Review
Properties of Laplace Transform

• Shit in Frequency: Suppose a function f1(t) = eatf(t) , the Laplace transform is

F1(s) =

∫ ∞

0
e−atf(t)e−stdt = F (s+ a)

• Differentiation:

L
[
df

dt

]
=

∫ ∞

0−

(
df

dt

)
e−stdt = −f(0−) + sF (s)

L
[
f̈(t)

]
= s2F (s)− sf(0−)− ḟ(0−)

L
[
f (m)(t)

]
= smF (s)− s(m−1)f(0−)− · · · − f (m−1)(0−)

• Integration:

L
[∫ t

0
f(τ)dτ

]
=

1

s
F (s)
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Laplace Transform Review
Properties of Laplace Transform

• Convolution: The convolution in the time domain corresponds to multiplication in the
S-domain. Assume that L [f1(t)] = F1(s) and L [f2(t)] = F2(s). Then

L [f1(t) ∗ f2(t)] =

∫ ∞

0
f1(t) ∗ f2(t)e

−stdt = F1(s)F2(s)

L−1 [F1(s)F2(s)] = f1(t) ∗ f2(t)

• Time product:The multiplication in the time domain corresponds to convolution in the
S-domain:

L [f1(t)f2(t)] =
1

2πj
F1(s) ∗ F2(s)

• Multiplication by Time: Multiplication by time corresponds to differentiation in the
S-domain:

L [tf(t)] = −
d

ds
F (s)
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Laplace Transform Review
Inverse Laplace Transform by Partial-Fraction Expansion

To find the inverse Laplace transform of a complicated function, we can convert the function
to a sum of simpler terms for which we know the Laplace transform of each term. The result
is called a partial-fraction expansion.

Using this method,

F (s) =
N(s)

D(s)
,

where the order of N(s) must be less than the order of D(s). If it is not, we can use the long
division to find the remainder whose numerator is of order less than its denominator. For
example, if

F (s) =
s3 + 2s2 + 6s+ 7

s2 + s+ 5
= s+ 1 +

2

s2 + s+ 5

Using the Laplace transform table, we obtain

f(t) =
dδ(t)

dt
+ δ(t) + L−1

[
2

s2 + s+ 5

]
the last term could be solve by partial-fraction.
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Laplace Transform Review
Inverse Laplace Transform by Partial-Fraction Expansion (Real and Distinct Roots)

Example:

Y (s) =
(s+ 2)(s+ 4)

s(s+ 1)(s+ 3)
, Find y(t).

By partial fraction expansion:

Y (s) =
C1

s
+

C2

s+ 1
+

C3

s+ 3

Using the cover-up method, we get

C1 =
(s+ 2)(s+ 4)

(s+ 1)(s+ 3)

∣∣∣∣
s=0

=
8

3

C2 =
(s+ 2)(s+ 4)

s(s+ 3)

∣∣∣∣
s=−1

= −
3

2

C3 =
(s+ 2)(s+ 4)

s(s+ 1)

∣∣∣∣
s=−3

= −
1

6
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Laplace Transform Review
Inverse Laplace Transform by Partial-Fraction Expansion (Real and Distinct Roots)

From the table the inverse Laplace transform of Y (S) is

y(t) =
8

3
1(t)−

3

2
e−t

1(t)−
1

6
e−3t

1(t).

There are two ways to solve the inverse Laplace transform using Matlab.

Matlab I

% using residue and table

num = conv([1 2],[1 4]);

% numerator

den = conv([1 1 0],[1 3]);

% denominator

[r,p,k] = residue(num,den);

% compute the residues

% r = [-0.1667, -1.5000, 2.6667]

% p = [-3, -1, 0]

Matlab II: symbolic

% using symbolic toolbox

syms s % define a variable s

f = ilaplace((s+2)*(s+4)/...

((s*(s+1)*(s+3))));

pretty(f)

% result

8 exp(-3 t) 3 exp(-t)

- - --------- - ---------

3 6 2
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Laplace Transform Review
Inverse Laplace Transform by Partial-Fraction Expansion (Real and Distinct Roots)

Scilab I

// define polynomial e.g.

// 1 + 2s^2 => [1 0 2]

// in matlab we use

// 1+2s^2 => [2 0 1]

num = convol([2 1],[4 1]);

// numerator

den = convol([0 1 1],[3 1]);

// denominator

Ns = poly(num,’s’,"c");

Ds = poly(den,’s’,"c");

[r] = residu(Ns/Ds);

// compute the residues

// r = [-0.1667, -1.5000, 2.6667]

// note 4.433D-17 is zero

Scilab I: result

-->r

r = r(1)

2.6666667

-------------

5.697D-17 + s

r(2)

- 1.5

-----

1 + s

r(3)

- 0.1666667

---------

3 + s
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Laplace Transform Review
Solution of a Differential Equation (Real and Distinct Roots)

Given the following differential equation, solve for y(t) if all initial conditions are zero. Use
the Laplace transform.

d2y(t)

dt2
+ 12

dy(t)

dt
+ 32y(t) = 321(t)

Taking the Laplace transform of the differential equation and set all initial conditions to zero
is

s2Y (s) + 12sY (s) + 32Y (s) =
32

s
.

Solving for the response, Y (s), yields

Y (s) =
32

s(s+ 4)(s+ 8)
=

A

s
+

B

(s+ 4)
+

C

(s+ 8)
=

1

s
+

−2

(s+ 4)
+

1

(s+ 8)

From Laplace transform table, y(t) is the sum of the inverse Laplace transforms of each
term. Hence

y(t) =
(
1− 2e−4t + e−8t

)
1(t)
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Laplace Transform Review
Inverse Laplace Transform by Partial-Fraction Expansion (Repeated Roots)

Consider F (s) =
2

(s+ 1)(s+ 2)2
. In this case the partial fraction expansion is

F (s) =
A

(s+ 1)
+

B

(s+ 2)2
+

C

(s+ 2)

Using a cover up method, A = 2 and C = −2. Letting s = 0 and substituting into above
equation, then

F (s) =
2

(s+ 1)
−

2

(s+ 2)2
−

2

(s+ 2)

From the Laplace transform table,

y(t) =
(
2e−1t − 2te−2t − 2e−2t

)
1(t)

For the higher degree of the repeated root, we could use “short-cut” method to solver for the
solutions.
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Laplace Transform Review
Inverse Laplace Transform by Partial-Fraction Expansion (Complex Roots)

In this case, the most convenient way is using the frequency shift property. For example

F (s) =
3

s(s2 + 2s+ 5)
.

By partial fraction expansion, we have

F (s) =
A

s
+

Bs+ C

s2 + 2s+ 5

Using cover up and short-cut method, A = 3/5, B = −3/5, and C = −6/5. Then

F (s) =
3/5

s
−

3

5

s+ 2

s2 + 2s+ 5
=

3/5

s
−

3

5

s+ 2

s2 + 2s+ 5

=
3/5

s
−

3

5

(s+ 1) + (1/2)2

(s+ 1)2 + 22

From the Laplace transform table, we obtain

f(t) =

(
3

5
−

3

5

(
e−t cos 2t+

1

2
e−t sin 2t

))
1(t) =

(
0.6− 0.671e−t cos(2t− 26.57◦

)
1(t)
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Transfer function

Transfer Fucntion

A Transfer Function is the ratio of the output of a system to the input of a system, in the
Laplace domain considering its initial conditions and equilibrium point to be zero.

A monic nth-order, linear, time-invariant differential equation,

dn

dtn
y(t)+an−1

dn−1

dtn−1
y(t) + · · ·+ a1

d

dt
y(t) + a0y(t) =

bm
dm

dtm
u(t) + bm−1

dm−1

dtm−1
u(t) + · · ·+ b1

d

dt
u(t) + b0u(t), n ≥ m

Taking the Laplace transform to the both sides and set all initial conditions to be zero, the
system becomes(

sn + an−1s
n−1 + · · ·+ a1s+ a0

)
Y (s) =

(
bmsm + bm−1s

m−1 + · · ·+ b1s+ b0
)
U(s)

Y (s)

U(s)
=

bmsm + bm−1sm−1 + · · ·+ b1s+ b0

sn + an−1sn−1 + · · ·+ a1s+ a0
= G(s)

INC 341 Feedback Control Systems:, Lecture 2 Transfer Function of Dynamic Systems I J 19/42 I }



Transfer function
Example

Find the transfer function of the system represented by

d

dt
y(t) + 2y(t) = u(t)

Taking the Laplace transform of both sides, and set all initial conditions to be zero, we have

sY (s) + 2Y (s) = U(s)

The tranfer function, G(s) is

G(s) =
Y (s)

U(s)
=

1

s+ 2

Matlab Coode I

num = [1];

den = [1 2];

sys = tf(num,den)

Matlab Code II

s = tf(’s’);

sys = 1/(s+2);
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Transfer function
Example

Scilab Coode I

num = poly([1,0],’s’,"c");

den = poly([2 1],’s’,"c");

sys = syslin(’c’,num,den)

Scilab Code II

num = 1;

den = %s + 2;

// %s is a variable s

sys1 = syslin(’c’,num,den);

Scilab Code III

s = poly(0,’s’);

sys1 = 1/(s+2)
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Transfer function
System Response from the Transfer Function

Find the response, y(t) to an 1(t) input of a system G(s) = 1/(s+ 2).
The Laplace transform of 1(t) is 1/s. Then

Y (s) = G(s)U(s) =
1

(s+ 2)

1

s

Using the partial fraction expansion, we get

Y (s) =
1/2

s
−

1/2

s+ 2

Finally, taking the inverse Laplace transform of each term yields

y(t) =
1

2
−

1

2
e−2t

We can use a Matlab command step(G) to get the response of the system to the unit-step
input, which gives the same result as directly time domain calculating with Matlab.
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Transfer function
System Response from the Transfer Function

Matlab Code I

num = [1];

den = conv([1 0],[1 2]);

G = tf(num,den);

t = 0:0.01:10;

step(G,t);

Matlab Code II

syms s

G = 1/(s*(s+2));

y = ilaplace(G);

t = 0:0.01:10;

plot(t,eval(y));
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Transfer function
System Response from the Transfer Function

Scilab Code I

num = 1;

den = %s*(%s +2);

G = syslin(’c’,num,den);

t = 0:0.01:10;

y = csim(’step’,t,G);

plot(t,y)

Scilab Code II

s = poly(0,’s’);

G = 1/(s*(s+2));

t = 0:0.01:10;

y = csim(’step’,t,G);

plot(t,y)
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Transfer function
Electrical Network

In feedback control system design, we use electrical networks to build analog controllers,
analog filters, etc. These are RLC circuits and operational amplifier circuits.

Component Voltage-current Current-voltage Impedance

Z(s) = V (s)/I(s)

v(t) =
1

C

∫ t

0
i(τ)dτ i(t) = C

d

dt
v(t)

1

Cs
Capacitor

v(t) = Ri(t) i(t) =
1

R
v(t) R

Resistor

v(t) = L
d

dt
i(t) i(t) =

1

L

∫ t

0
v(τ)dτ Ls

Inductor

Note: All initial conditions are zero.
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Transfer function
Electrical Network: RLC series circuit

−
+

v(t)

L R

C
+
vC(t)

−
i(t) −

+
V (s)

Ls R

1

Cs

+
VC(s)

−
I(s)

The Laplace transform of the mesh voltage with all zero conditions, is(
Ls+R+

1

Cs

)
I(s) = V (s)(

Ls+R+
1

Cs

)
CsVC(s) = V (s)

VC(s)

V (s)
=

1/LC

s2 +
R

L
s+

1

LC

INC 341 Feedback Control Systems:, Lecture 2 Transfer Function of Dynamic Systems I J 26/42 I }



Transfer function
Electrical Network: RLC circuit

−
+

v(t)

R1 R2

C
+
vC(t)

−
Li1(t) i2(t) −

+
V (s)

R1 R2

1

Cs

+
VC(s)

−
LsI1(s) I2(s)

R1 + Ls −Ls

−Ls R2 + Ls+ 1
Cs

I1(s)
I2(s)

 =

V (s)

0


[
I1(s)
I2(s)

]
=

1

(R1 + Ls)(R2 + Ls+ 1
Cs

)− L2s2

R2 + Ls+ 1
Cs

Ls

Ls R1 + Ls

V (s)

0



I2(s) =
LsV (s)

(R1 + Ls)(R2 + Ls+ 1
Cs

)− L2s2

I2(s)

V (s)
=

LCs2

(R1 +R2)LCs2 + (R1R2C + L)s+R1
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Transfer function
Electrical Network: RLC circuit

Matlab code

syms R1 R2 V L C s

A = [ R1 + L*s, -L*s; -L*s, R2+L*s+1/(C*s)];

b = [V ; 0];

I = inv(A)*b;

I2 = I(2,1);

% find the transfer function I2/V

sys = I2/V

pretty(sys)

2

C L s

--------------------------------------------

2 2

R1 + L s + C L R1 s + C L R2 s + C R1 R2 s
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Transfer function
Electrical Network: RLC circuit

−
+

v(t)

R1 R2

C
+
vC(t)

−
L

−
+

V (s)

R1 R2

1

Cs

+
vC(s)

−
Ls

VL(s)

VL(s)− V (s)

R1
+

VL(s)

Ls
+

VL(s)− VC(s)

R2
= 0

VC(s)− VL(s)

R2
+ CsVC(s) = 0

VL(s) = (R2Cs+ 1)VC(s)

Substituting VL(s) to the first equation, we have

R2Ls(R2Cs+ 1)VC(s) +R1R2(R2Cs+ 1)VC(s) +R1R2LCs2VC(s) = R2LsV (s)

VC(s)

V (s)
=

Ls

(R1 +R2)LCs2 + (L+R1R2C)s+R1

INC 341 Feedback Control Systems:, Lecture 2 Transfer Function of Dynamic Systems I J 29/42 I }



Transfer function
Electrical Network: Inverting Amplifier

Instead of consider R,L and C separately, each composition RL, RC, LC, and RLC could
be considered in terms of impedance as follow.

vi(t)

C1

R1

−

+

R2 C2

vo(t)

Z1(s) = C1||R1 =
R1

R1C1s+ 1

Z2(s) = R2 +
1

Cs

Vo(s)

Vi(s)
= −

Z2(s)

Z1(s)
= −

R2 +
1

Cs
R1

R1C1s+ 1

= −
(R1C1s+ 1)(R2C2s+ 1)

R1C2s

This circuit is called a PID controller.
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Transfer function
Electrical Network: Noninverting Amplifier

vi(t)

−

+

R1

C1

R2

C2

vo(t)

Z1(s) = R1 +
1

C1s

Z2(s) = R2||C2 =
R2

R2C2s+ 1

Vo(s)

Vi(s)
= 1 +

Z2(s)

Z1(s)
= 1 +

R2

R2C2s+ 1
R1C1s+ 1

C1s

= 1 +
R2C1s

(R1C1s+ 1)(R2C2s+ 1)

=
R1R2C1C2s2 + (R1C1 +R2C1 +R2C2)s+ 1

(R1R2C1C2s2 + (R1C1 +R2C2)s+ 1

INC 341 Feedback Control Systems:, Lecture 2 Transfer Function of Dynamic Systems I J 31/42 I }



Transfer function
Translational Mechanical System

Component Force-velocity Force-displacement Impedance

ZM (s) = F (s)/X(s)

k
f(t)

x(t)

f(t) = k

∫ t

0
v(τ)dτ f(t) = kx(t) k

Spring

b

f(t)

x(t)

f(t) = bv(t) f(t) = bẋ(t) bs

Viscous damper

M f(t)

x(t)

f(t) = Mv̇(t) f(t) = Mẍ Ms2

Mass
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Transfer function
Translational Mechanical System: Example

Assuming that there are no friction between a mass and ground.

M f(t)

x(t)

k

b M

x(t)

kx(t)

bẋ(t)

f(t)

From the Newton’s law ΣF = ma, we have

Mẍ(t) + bẋ(t) + kx(t) = f(t)

Taking the Laplace transform of above equation and setting all initial conditions to be zero,
we obtain

Ms2X(s) + bsX(s) + kX(s) = F (s)

X(s)

F (s)
=

1

Ms2 + bs+ k
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Transfer function
Translational Mechanical System: Example

The point of motion in a system can still move if all other points of motion are held still.
The name for the number of the linearly independent motions i sthe number of the degrees
of freedom.

M1 M2

k3k1

x2(t)x1(t)

k2

b3

f(t)

b1 b2

M1

(k1 + k2)x1(t)

(b1 + b3)ẋ1(t)

k2x2(t)

b3ẋ2(t)f(t)

M2

(k2 + k3)x2(t)

(b2 + b3)ẋ2(t)

k2x1(t)

b3ẋ1(t)

M1ẍ1(t) + (b1 + b3)ẋ1(t)− b3ẋ2(t) + (k1 + k2)x1(t)− k2x2 = f(t)

M2ẍ2(t) + (b2 + b3)ẋ2(t)− b3ẋ1(t) + (k2 + k3)x2(t)− k2x1 = 0
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Transfer function
Translational Mechanical System: Example

Taking the Laplace transform of both equations, we get(
M1s

2 + (b1 + b3)s+ (k1 + k2)
)
X1(s)− (b3s+ k2)X2(s) = F (s)

−(b3s+ k2)X1(s) +
(
M2s

2 + (b2 + b3)s+ (k2 + k3)
)
X2(s) = 0

Rearranging the equations into matrix form:M1s2 + (b1 + b3)s+ (k1 + k2) −(b3s+ k2)

−(b3s+ k2) M2s2 + (b2 + b3)s+ (k2 + k3)

X1(s)

X2(s)

 =

F (s)

0


X2(s)

F (s)
=

b3s+ k2

∆

where

∆ =

∣∣∣∣∣∣
M1s2 + (b1 + b3)s+ (k1 + k2) −(b3s+ k2)

−(b3s+ k2) M2s2 + (b2 + b3)s+ (k2 + k3)

∣∣∣∣∣∣
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Transfer function
Translational Mechanical System: Example

M1 M2

M3

k1

x2(t)x1(t)

x3(t)

k2
f(t)

b1 b2

b3 b4

M1

(k1 + k2)x1(t)

(b1 + b3)ẋ1(t)

k2x2(t)

b3ẋ3(t)

M2

k2x2(t)

(b2 + b4)ẋ2(t)

k2x1(t)

f(t)

b4ẋ3(t)

M3(b3 + b4)ẋ3(t)
b3ẋ1(t)

b4ẋ2(t)

The equations of motion are

M1ẍ1(t) + (b1 + b3)ẋ1(t) + (k1 + k2)x1(t)− k2x2(t)− b3ẋ3(t) = 0

M2ẍ2(t) + (b2 + b4)ẋ2(t) + k2x2(t)− k2x1(t)− b4ẋ3(t) = f(t)

M3ẍ3(t) + (b3 + b4)ẋ3(t)− b3ẋ1(t)− b4ẋ2(t) = 0
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Transfer function
Translational Mechanical System: Example

Taking the Laplace transform to all equations, we have(
M1s

2 + (b1 + b3)s+ (k1 + k2)
)
X1(s)− k2X2(s)− b3sX3(s) = 0

−k2X1(s) +
(
M2s

2 + (b2 + b4)s+ k2
)
X2(s)− b4sX3(s) = F (s)

−b3sX1(s)− b4sX2(s) +
(
M3s

2 + (b3 + b4)s
)
X3(s) = 0

and in matrix from
M1s2 + (b1 + b3)s+ (k1 + k2) −k2 −b3s

−k2 M2s2 + (b2 + b4)s+ k2 −b4s

−b3s −b4s M3s2 + (b3 + b4)s


X1(s)
X2(s)
X3(s)



=

 0
F (s)
0


Note: the matrix is symmetry.
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Transfer function
Rotational Mechanical System

Component Torque-angular Torque-angular Impedance

velocity displacement ZM (s) = τ̂(s)/Θ(s)

k

τ(t) θ(t)

τ(t) = k

∫ t1

0
ω(t)dt τ(t) = kθ(t) k

Spring

b

τ(t) θ(t)

τ(t) = bω(t) τ(t) = bθ̇(t) bs

Viscous damper

J τ(t) θ(t)

τ(t) = Jω̇(t) τ(t) = Jθ̈ Js2

Inertia
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Transfer function
Rotational Mechanical System: Example

Bearing

b1

Bearing

b2

J1 J2

τ(t) θ2(t)θ1(t)

b1

J1
k

J2

b2

τ(t) θ1(t) θ2(t)

J1

θ1(t)

τ(t)

b1ω1(t)

k(θ1(t)− θ2(t))

J2

θ2(t)
b2ω2(t)

k(θ2(t)− θ1(t))

The equations of motion are

τ(t)− b1θ̇1(t)− k(θ1(t)− θ2(t)) = J1θ̈1

−k(θ2(t)− θ1(t))− b2θ̇2(t) = J2θ̈2

Taking the Laplace transform, we have(
J1s

2 + b1s+ k
)
Θ1(s)− kΘ2(s) = τ̂(s)(

J2s
2 + b2s+ k

)
Θ2(s)− kΘ1(s) = 0
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Transfer function
Rotational Mechanical System: Example

b1

J1
k

J2

b2

J3

b3

θ1(t) θ2(t)τ(t) θ3(t)

The equations of motion are

τ(t)− b1θ̇1(t)− k (θ1(t)− θ2(t)) = J1θ̈1

−k (θ2(t)− θ1(t))− b2
(
θ̇2 − θ̇3

)
= J2θ̈2

−b2
(
θ̇3 − θ̇2

)
− b3θ̇3 = J3θ̈3

Taking the Laplace transform, we have(
J1s

2 + b1s+ k
)
Θ1(s)− kΘ2(s) = τ̂(s)

−kΘ1(s) +
(
J2s

2 + b2s+ k
)
Θ2(s)− b2sΘ3(s) = 0

−b2sΘ2(s) +
(
J3s

2 + (b2 + b3)s
)
Θ3(s) = 0
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Transfer function
Rotational Mechanical System: Example

In matrix from
(
J1s2 + b1s+ k

)
−k 0

−k
(
J2s2 + b2s+ k

)
−b2s

0 −b2s
(
J3s2 + (b2 + b3)s

)


Θ1(s)

Θ2(s)

Θ3(s)



=


τ̂(s)

0

0


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