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Review of Bode plot

• The most widely used graphical representation of a frequency response is the Bode
diagram, developed in the Bell laboratories in the 1930s by W. H. Bode.

• Magnitude and phase are plotted versus frequency in two separate plots, where a log
scale is used for magnitude and frequency and a linear scale for the phase.

• The log scale is useful because the transfer function is composed of pole and zero
factors which can be added graphically.

• For example

G(jω) = g1(jω)g2(jω)
g3(jω)

Using the notation

gi = |gi|ejφi

This can be written as

G = |G|ejϕ =
|g1||g2|
|g3|

ej(ϕ1+ϕ2−ϕ3)
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Review of Bode plot

• Thus

|G| =
|g1||g2|
|g3|

, ϕ = φ1 + φ2 − φ3

• the phase of G is the sum of the phase angles of the factors, and on a log scale we also
have

log |G| = log |g1|+ log |g2| − log |g3|

It is standard to measure the logarithmic gain log |G| in dB, the definition is

|G|dB = 20 log |G|
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Review of Bode plot

First order term
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Review of Bode plot

Second order term
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Review of Bode plot

Example
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Review of Bode plot

Consider

G(s) = 10(s + 1)
s + 4

s = tf('s');
G = 10*(s+1)/(s+4);
bode(G);
% or
w = logspace(-2,2,200)
% set the frequency range from 10^-2 to 10^2 with 200 sample points
bode(G,w)
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Review of Bode plot
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Delay time reduces the phase margin of the system.
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Review of Bode plot

Bandwidth consider a first-order system

G(s) = b0
s + a0

=
b0/a0
1

a0
s + 1

=
Kc

τs + 1
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Review of Bode plot

Bandwidth of the second order system

G(s) = K
s2 + 2ζωns + ω2

n

We can take

ωb ≈ ωn

as a reasonable approximation of the bandwidth. We also have

ωb ≈
1.7
tr

,

where tr is a rise-time of the second order system.
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Review of Bode plot

minimum phase system A system with transfer function G(s) is called minimum phase if it
has no pole or zero on the right half plane

The definition implies that a minimum-phase system is stable; in addition there must be no
zeros in the right half plane. Conversely, a system is non-minimum phase if it has right half
plane zeros or poles or both.

G1(s) =
1

s + 1
stable and minimum-phase

G2(s) =
1

s − 1
unstable and nonminimum-phase
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Review of Bode plot
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Nyquist Plot

Bode and Nyquist plot of

G(s) = 1
s + 1
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Nyquist Plot

The idea of Nyquist plot, we consider the transfer function

G(s) = 1
s + 1

or G(jω) = 1
jω + 1

For ω = 0 we have G = 1 , and for ω = ∞ we have G = 0. At the corner frequency ω = 1

G(jω) = 1
1 + j

=
1
2
− j 1

2

Actually the magnitude and phase of G(jω) can be read from the Bode plot.
• The value of the magnitude are 1 (or 0 dB) or 0 (or −∞ dB) and the phase angles are

0◦ and −90◦

• At the corner frequency, the magnitude is 1/
√

2 (-3dB) and the phase is −45◦.
• The complex values at the frequencies 0, 1 and ∞ are marked in the G(s)-plane.
• Doing this for sufficiently many frequencies reveals that the points are located on a

semicircle centered at 1/2; this semicircular plot is the Nyquist plot of G(s) for positive
frequencies.

• The Nyquist plot of negative frequencies is a mirror image of the positive frequencies.
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Nyquist Plot

Consider a second order system

G(s) = 1
s(s + 1)

Evaluated on the imaginary axis

G(jω) = 1
jω(jω + 1)

=
1

−ω2 + jω

=
−ω2 − jω
ω4 + ω2 = −

1
ω2 + 1

− j 1
ω(ω2 + 1)

We have

ω = 0 : G = −1 − j∞

ω = 1 : G = −
1
2
− j 1

2
ω = ∞ : G = 0
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Nyquist Plot

Bode and Nyquist plot of

G(s) = 1
s(s + 1)

INC 342 Feedback Control Systems:, Lecture 11 Frequency Domain Analysis J 16/36 I }



The Nyquist Stability Criterion

The Nyquist stability criterion is based on Cauchy’s principle; the idea is to use the contour
evaluation o fan open-loop transfer function to determine the presence of unstable
closed-loop poles.

Assume we have a transfer function L(s)

L(s) = s − z
(s − p1)(s − p2)
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The Nyquist Stability Criterion

• In the s-plane, two poles and a zero are marked, together with a test point s0 which is
moved clockwise along a closed contour C.

• We are interested in the change of the phase angle of L(s0) when s0 is move around
the closed contour C.

• The phase angel of L(s0) is the sum of the zero angel and the negative pole angels
indicated inteh plot.

• Full traverse, the change of the phase angle is zero.
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The Nyquist Stability Criterion

• The function L(s) maps each point on C into the L(s)-plane, and the point L(s0)
moves along a closed contour which is the mapping of C as s0 move along C.

• ϕ denotes the phase angle of L(s0).
• The plot shows that the change of the phase angle of L(s0) after a full traverse is zero,

i.e. ∆ϕ = 0◦.
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The Nyquist Stability Criterion

• One of poles of L(s) is enclosed by C.
• In this case the phase change of L(s0) after a full transverse is not zero: the angle of

the enclosed pole undergoes a change of 360◦. If s0 moves clockwise, then L(s0) move
counterclockwise and we have ∆ϕ = 360◦.

• This contour must encircle the origin of the L(s)-plane counterclockwise.
• If instead of a pole a zero is enclosed, ∆ϕ = −360◦ and L(s0) encircles the origin

clockwise.
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The Nyquist Stability Criterion

• Two poles are enclosed, and we have ∆ϕ = 720◦ after one traverse along C.
• Therefore the mapping of C must encircle the origin of the L(s)-plane two times

counterclockwise.
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The Nyquist Stability Criterion

Nyquist’s idea was to use this fact to detect the presence of closed-loop poles in the right
half plane. For this purpose, the contour C must be chosen such that it encloses the whole
right half plane. Such a contour, known as the Nyquist path.
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The Nyquist Stability Criterion

The closed-loop characteristic equation is

1 + KL(s) = 0

An unstable zero of 1 + KL(s) indicates an unstable closed-loop pole. For Nyquist plot,
instead of evaluating 1 + KL(s) and checking encirclements of the origin, we can equivalently
evaluate the open-loop transfer function KL(s) and check encirclements of the point −1
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The Nyquist Stability Criterion

• To evaluate KL(s) along the Nyquist path means to evaluate along the jω-axis from
ω = −∞ to ω = ∞, and along the infinite arc.

• However, the transfer functions of physical systems are zero at infinite frequency, and
the infinite arc in the s-plane is mapped into the origin of the L(s)-plane.

• Therefore, KL(s) needs to be evaluated only from −j∞ to j∞.
• This yields precisely the Nyquist plot of KL(s) for positive and negative frequencies.
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The Nyquist Stability Criterion

• The number of encirclements of the point −1 is not only influenced by the zeros but
also by poles of 1 + KL(s) in the right half plane.

• If the right half plane contains a zero or a pole of 1 + KL(s), the Nyquist plot of
KL(s) encircles the point −1 (clockwise or counterclockwise, respectively).

• To distinguish between poles and zeros of the function 1 + KL(s), we write
L(s) = b(s)/a(s) to obtain

1 + KL(s) = a(s) + Kb(s)
a(s)

• the zeros of the function 1 + KL(s) are the closed-loop poles, and
• the poles of the function 1 + KL(s) are the open-loop poles (the poles of L(s))
• If the open loop transfer function is unstable, the number of unstable poles is known.

So that can be taken into account when checking closed-loop stability.
• If we let Z denote the number of unstable closed-loop pole, and P the number of

unstable open-loop poles, then the above considerations show that the Nyquist plot of
KL(s) encircles N = Z − P times clockwise the point −1.

INC 342 Feedback Control Systems:, Lecture 11 Frequency Domain Analysis J 25/36 I }



The Nyquist Stability Criterion

Nyquist Stability Test
1. Draw the Nyquist plot of KL(s)
2. Determine the number N of clockwise encirclements of the point −1 and the number

P of unstable open-loop poles
3. The closed-loop system has Z = N + P unstable poles.

If the open loop transfer function is stable, then the closed-loop system is stable if the
Nyquist polt does not encircle the point −1. If KL(s) has one unstable pole, then
closed-loop stability requires one counterclockwise encirclement of −1.
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The Nyquist Stability Criterion: Example

Consider

KL(s) = K
s + 1

• The Nyquist plot is shown in Figure, it is a circle centered at K/2 with radius K/2
• Because P = 0 (no unstable poles of L(s)) and N = 0 (no encirclement of -1) for all

K > 0
• The closed-loop system is stable for all positive K.
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The Nyquist Stability Criterion: Example

Consider

KL(s) = K
s(s + 1)

• The Nyquist plot is in fact closed by an arc at infinity.
• The Nyquist path has been modified to avoid the pole at the origin by making an

infinitely small detour to the right.
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The Nyquist Stability Criterion: Example

• It is this small arc that is mapped into an arc at infinity, and to determine whether or
not the Nyquist plot encircles the point −1.

• It is important to know whether this infinite arc encloses the right half plane or the left
half plant.

• One the small arc, three test points si, i = 1, 2, 3 are marked.
• Because the radius of the semicircle around the origin is infinitely small, the magnitude

of KL(si) is infinite, and the phase angles - determine by the pole angles - are

argKL(s1) = +90◦, argKL(s2) = 0◦, argKL(s3) = −90◦

• This shows that the Nyquist plot is completed by aan infinite arc to the right.
• Because the modified Nyquist path does not encircle the pole at the origin, we have

P = 0, and from the Figure we conclude that there is no encirclement of −1 for any
positive value of K (i.e. N = 0)

• Therefore the closed-loop system is stable for any positive gain.
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The Nyquist Stability Criterion: Example
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The Nyquist Stability Criterion: Example

Consider the transfer function

L(s) = 10
(s + 1)3 =

10
s3 + 3s2 + 3s + 1

Substituting jω for s gives

L(jω) = 10
(jω)3 + 3(jω)2 + 3jω + 1

At low frequencies ω << 1 we have

L ≈ 10 ⇒ |L| ≈ 10, ϕ ≈ 0◦

and at high frequencies

L ≈
10

(jω)3 =
10

−jω3 = j 10
ω

⇒ |L| ≈ 10
ω3 , ϕ ≈ −270◦
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The Nyquist Stability Criterion: Example
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The Nyquist Stability Criterion: Example
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• The left hand side K = 1
• The right hand side K = 0.5
• The Nyquist plot of L(s) encircles the critical point −1 two time clockwise (N = 2).

Because L(s) has no unstable pole (P = 0), this implies that the closed-loop system
has two unstable poles when K = 1
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Gain and Phase Margin

The Nyquist stability test does not only indicate whether a closed-loop system is stable, it
also gives information about the “distance” from the stability boundary.

• Such a measure is called a stability margin
• The upper bound on K, which the closed-loop system becomes unstable, is called the

gain margin (GM) of the system.
• The phase margin (PM) is defined as the maximum phase change of L(s) that the

closed-loop system can tolerate before it becomes unstable.
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Gain and Phase Margin
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