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The steps for sketching a root locus

Step 1 Mark open-loop poles and zeros in the s-plane
Step 2 Mark real axis portion of the root locus to the left of an odd number of

poles and zeros.
Step 3 Find asymptotes for the n − m root locus branches that go to infinity:

α =

∑n
i=1 Repi −

∑m
i=1 Rezi

n − m
, ϕ∞l =

180◦

n − m
+ l 360◦

n − m
, l = 0, . . . ,n − m − 1

Step 4 Use the phase condition on a test point along a small circle around an
open-loop pole to find the angle of departure:

argL(s) =
m∑

i=1
arg(s − zi)−

n∑
i=1

arg(s − pi) = 180◦ + l360◦

Step 5 Compute breakaway and break-in points from

b da
ds

− a db
ds

= 0
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The steps for sketching a root locus: Example

Consider an open-loop transfer function

L(s) = K
s(s + 4)(s + 5)

The system has three poles and on zero, so the angles of the three asymptotes can be
calculated as

θ∞l =
180◦

3
+ l 360◦

3
= 60◦,−60◦, 180◦

for l = 0,−1 and 1 and the intersection of the asymptotes with the real axis is given by

α =
0 − 4 − 5

3
= −3.

The asymptotes clearly indicate that the system will become unstable when the gain is
sufficiently large.
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The steps for sketching a root locus: Example
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The steps for sketching a root locus: Example

Consider an open-loop transfer function

L(s) = K(s2 + 4s + 8
(s + 3)(s2 + 2s + 2

=
K(s − z1)(s − z2)

(s − p1)(s − p2)(s − p3)

with zeros at z1,2 = −2 ± j2 and poles at p1 = −3 and p2,3 = −1 ± j
The departure angel ϕ at p2 = −1 + j satisfies the following equation

∠(p2 − z1) + ∠(p2 − z2)− ∠(p2 − p1)− ϕ− ∠(p2 − p3) = −180◦

i.e. −45◦ + tan−1 3 − 90◦ − ϕ− tan−1 1
2 = −180◦, then ϕ = 90◦. and the arrival angle at

the zero z1 = −2 + j2 can be calculate from

ψ + ∠(z1 − z2)− ∠(z1 − p1)− ∠(z1 − p2)− ∠(z1 − p3) = −180◦

i.e.,

ψ + 90◦ − tan−1 2 − 135◦ − (180◦ − tan−1 3) = −180◦ ⇒ ψ = 36.87◦
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The steps for sketching a root locus: Example

INC 342 Feedback Control Systems:, Lecture 10 Root Locus Design J 6/38 I }



Not standard application

Consider a feedback system with

G(s)C(s) = 4(s + 3)
s(s + 1)(s + K)

,

where K is a variable pole position. We would like to analyze how K effects the system
stability and performance. The problem is obviously not in the standard root-locus format.

1 + G(s)C(s) = 0 ⇒ s(s + 1)(s + K) + 4(s + 3) = 0

which can be written as

(s + 2)(s2 − s + 6) + Ks(s + 1) = 0 ⇒ 1 +
Ks(s + 1)

(s + 2)(s2 − s + 6)
= 0

Then

L(s) = Ks(s + 1)
(s + 2)(s2 − s + 6)
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Not standard application

Matlab code

s = tf('s');
L = (s*(s+1))/((s+2)*(s^2 - s + 6)); % create the transfer function
rlocus(L) % generate a root locus
[K, poles] = rlocfind(L)
% to find the gain K and poles locations at the desired point.

Here we want to find the critical value of K where the root locus enters the left half plane
(make closed-loop system unstable).

To do this by hand, we could use the Routh-Horwitz stability test to the characteristic
polynomial:
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Not standard application
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Not standard application
Routh’s criterion

Is the system with denominator polynomial

s(s + 1)(s + K) + 4(s + 3) = s3 + (1 + K)s2 + (K + 4)s + 12

Form the Routh array

s3 1 K + 4 0
s2 1 + K 12 0
s1 c1 0
s0 d1

c1 =

−
∣∣∣∣ 1 K + 4
1 + K 12

∣∣∣∣
1 + K

(K + 1)(K + 4)− 12 > 0

K >

√
57 − 5

2
= 1.2749

• We don’t need to calculate d1

• Substituting the value of K to get the critical closed-loop poles.
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Phase-lag controller

Consider a closed-loop system shown in Figure below

r(t) e(t) C(s) u(t) G(s)
y(t)

−

We shall consider a first-order phase-lag controller in the following form:

C(s) = K(s + b)
s + a

, b > a > 0 C(0) = K b
a

• The phase-lag controller has the potential to increase the steady-state gain constant by
b/a times compared to a pure gain controller.

• A phase-lag controller is designed in such a way that C(s) contributes very little phase
at the desired closed-loop pole locations while providing substantial gain increase to
reduce the steady-state error.
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Phase-lag controller

Phase-lag controller design
• Construct a root-locus plot of KP(S)
• Find the closed-loop (dominant) poles s1 and s̄1 on the root -locus plot that will give

the desired transient response and find the corresponding K value, say K0

• Calculate the value of K required to yield the desired steady-state response and denote
this K and Ks

• Pick a number b(> a) that is much smaller than |s1| (so that s1+b
s1+a ≈ 1 ) and let

a = K0b/Ks

• Verify the controller design by simulation with C(s) = K0(s+b)
s+a . Note that C(0) = Ks.

• For PI controller, Ks = ∞.
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Phase-lag controller: example

Consider a unity feedback system with a plant model

G(s) = 10
s(s + 5)(s + 10)

We would like to design a controller so that
• the response of the closed-loop system with respect to a step input has no more than

20% overshoot and the settling time is no greater than 4 sec;
• the steady-state error with respect to a ramp input is no more than 0.05.

Find the dominant pole locations. Consider a standard second-order system

ω2
n

s2 + 2ζωns + ω2
n
, s1 = −ζωn + jωn

√
1 − ζ2

From

%MP =
y(tp)− y(∞)

y(∞)
× 100% = e−ζπ/

√
1−ζ2 × 100%
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Phase-lag controller: example

to guarantee that the overshoot is no more than 20%, we need the damping ratio to satisfy

ζ ≥
− ln(0.2)√

π2 + (ln(0.2))2
= 0.456

To guarantee that the settling time is no more than 4 sec with 2% tolerance, we need

ζωn ≥
4
ts

= 1
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Phase-lag controller: example

Construct a root-locus plot for

L(s) = 10K
s(s + 5)(s + 10)
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Phase-lag controller: example

We need the real part of s1 less than 1 and they have approximately the damping ratio 0.5 by
using the Matlab command [K0, s1] = rlocfind(L) we then get

K0 = 13, s1 = −1665 ± j2.8927, s2 = −11.67

Find the required gain to satisfy the desired steady-state error. Note that Ks = C(0) and

Kv = lim
s→0

sG(s)C(s) = lim
s→0

s 10
s(s + 5)(s + 10)

C(s) = C(0)
5

Thus

ess =
1

Kv
=

5
C(0)

≤ 0.05

gives Ks = C(0) ≥ 100. Take Ks = 100.
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Phase-lag controller: example

Take b = 0.05 which is much smaller than |s1|. Then a = K0b/Ks = 0.0065 and we have a
controller

C(s) = 13(s + 0.05)
s + 0.0065

which gives the closed-loop poles at

−11.6656,−0.0509,−1.6450 ± j2.8724
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Phase-lag controller: example
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Phase-lag controller: example
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Phase-lead controller

From the previous example, if it is required that the settling time be less than 1 sec. It is
fairly easy to see that no phase-lag (or PI) controller can satisfy this specification since it
requires that the dominant poles satisfy Re {s1} ≤ −4. We need a phase-lead (or PID)
controller to move the dominant poles a little further away from the imaginary axis.

A first-order phase-lead controller has the following general form:

C(s) = K(s + b)
s + a

, a > b > 0

Since ∠C(s) > 0 for any s on the upper half of the comple plane, it contributes a positive
angle (or phase-lead).
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Phase-lead controller

Consider a system with three poles p1, p2, and p3. Suppose s0 is a point on the root locus

−ϕ1 − ϕ2 − ϕ3 = −180◦

We need to move the closed-loop pole from s0 to s1; then we would need the following phase
lead to guarantee that s1 point satisfies the phase condition:

θ := α1 + α2 + α3 − ϕ1 − ϕ2 − ϕ3 > 0
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Phase-lead controller

Phase-lag controller design
Step 1 Construct a root-locus plot of KG(s).
Step 2 Determine the desired closed-loop (dominant) poles s1 and s̄1 that will give

the desired transient response.
Step 3 Calculate the angel required so that s1 is on the root-locus plot

∠C(s1) + ∠G(s1) = (2k + 1)180◦,
θ = ∠C(s1) = (2k + 1)180◦ − ∠G(s1) > 0

Step 4 Find b and a so that

∠(s1 + b)− ∠(s1 + a) = θ

and make sure that s1 is the dominant pole (Note that there are infinitely
many choices.)
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Phase-lead controller

Step 5 Find K0 so that

K0|s1 + b|
|s1 + a|

|G(s1)| = 1

Step 6 Verify the controller design by simulation with

C(s) = K0(s + b)
s + a
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Phase-lead controller: example

Consider a system

G(s) = 10
s(s + 5)(s + 10)

We would like to design a controller so that
• the response of the closed-loop system with respect to a step input has no more than

20% overshoot and the settling time is no more than 1 sec.
As in the previous example, we can find the desired dominant pole locations:

ζ ≥ 0.456, ζωn ≥ 4

and from the previous example, it is clear that a phase-lag or PI controller cannot satisfy
these design specifications. Using phase-lead compensator, we pick the dominant poles
conservatively at

s1 = −5 + j5, s̄1 = −5 − j5

Then G(s1) = j0.04 by hand or using evalfr(G,s1) and ∠G(s1) = 90◦.
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Phase-lead controller: example

Thus, we need

θ = ∠C(s1) = 180◦ − 90◦ = 90◦

To pick b and a, if b ≥ 5, then a must be ∞, since θ = 90◦. As a first try, we pick b = 2.
Then, a can be solved from

∠(s1 + b)− ∠(s1 + a) = θ

which gives a = 13.3333. Now K0 can be found as K0 = 41.667. Thus, we have a
phase-lead controller

C0(s) =
41.667(s + 2)

s + 13.333
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Phase-lead controller: example
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Phase-lead controller: example

The closed-loop poles are (using a command pole(feedback(G*C_0,1))

−17.3739, −5 ± j5, −0.9593

and the pair of poles at −5 ± j5 are actually not dominant poles. The pole at −0.9593,
which is not close to any zero, turns out to be the dominant poles.
We shall try with b = 4. Then, we have a = 30 and K0 = 125, which give

C1(s) =
125(s + 4)

s + 30

The closed-loop poles at

−31.8614, −5 ± j5, −3.1386

The poles −5 ± j5 are also not the dominant poles but the dominant pole at −3.1386 is not
very close to the closed-loop zero at −4. The design meets the requirement by looking at the
step response.

INC 342 Feedback Control Systems:, Lecture 10 Root Locus Design J 27/38 I }



Phase-lead controller: example
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The step response shown in Fig above indicates that the design specifications are met the
requirements. The velocity constant can be calculated as Kv = 10/3 with C1(s). Thus the
steady-state error with respect to ta ramp input is ess = 1/Kv = 3/10 = 0.3.
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Phase-lead controller: example

It is sometimes more convenient to first pick some controller parameters. For example, one
can first choose the desired controller zero and pole, and then determine and appropriate
gain. Using the same example we have

• the open loop pole at −5 in the transfer function G(s) tends to pull the closed-loop
poles to the right half plane.

• It is appropriate to place the zero of the lead controller at the same location to cancel
the effect of that pole.

Then, we choose b = 5 and then a = 20.

C2(s) =
K(s + 5)
s + 20

Then

L(s) = C(s)G(s) = 10K
s(s + 10)(s + 20)
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Phase-lead controller: example
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Choosing a suitable gain K from the root locus, we obtain the lead controller,

C(s) = 90(s + 5)
s + 20
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Phase-lead controller: example

The closed-loop poles with this controller are given by

−23.0074, −3.4963 ± j5.1859

The step response with the controller shown in Fig indicates that the design specifications
are met.
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Lead-Lag compensator

• Phase-lag or Phase-lead controller may not provide enough design freedom to satisfy
design specifications.

• A combination of phase-lag and phase-lead (or PID) controller is necessary.
• The basic idea is to use a phase-lead to satisfy the transient response and a phase-lag

to satisfy the steady-state requirement.
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Lead-Lag compensator: Example

Consider a unity feedback system with

G(s) = 10
s(s + 5)(s + 10)

We would like to design a controller so that
• the response of the closed-loop system with respect to a step input has no more than

20% overshoot and the settling time is no greater than 1 sec;
• the steady-state error with respect to a ramp input is no more than 0.05.

From the previous example the phase-lead controller is

Clead(s) =
125(s + 4)

s + 30

will satisfy the transient specifications, i.e. PO ≤ 20% and ts ≤ 1 sec. The new plant model
is

Glead(s) = G(s)Clead(s) =
1250(s + 4)

s(s + 5)(s + 10)(s + 30)
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Lead-Lag compensator: Example

We shall now design a phase-lag controller for Glead(s) so that the steady-state error
specification is satisfied. The steady-state error specification requires Kv ≥ 20. We shall take
Kv = 20.
The desired closed-loop poles at

−31.8614, −5 ± j5, −3.1386

which are the closed-loop poles with the phase-lead controller Clead(s). We have Kv = 10/3
when only the phase-lead controller is used. Then we need to increase the system gain by

Ks =
20

10/3
= 6

With a trial-and-error method, we pick b = 0.08 (at least 10 times smaller than the dominant
poles). Then a = b/Ks = 0.08/6 = 0.01333 (with K0 = 1). Thus we have

Clag(s) =
s + b
s + a

=
s + 0.08

s + 0.01333
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Lead-Lag compensator: Example

and finally the desired lead-lag controller is

C(s) = Clead(s)Clag(s) =
125(s + 4)

s + 30
s + 0.08

s + 0.01333

The closed-loop poles with this lead-lag controller are at

−31.858, −4.9821 ± j4.9624, −3.1094, −0.0817

Note that the closed-loop pole at −0.0817 is almost canceled by a closed-loop zero at −0.08,
and therefore they will have almost no effect on system response.
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Phase-lead controller: example
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Delay-Time System

To use root-locus design method with a first-order plus dead-time system

G(s) = G0(s)e−Tds

One way we can approximate the delay-time with a Padé approximation. The idea is to
develop both e−Tds and the rational function into a series and match a suitable number of
terms. We have

e−Tds = 1 − Tds + (Tds)2

2!
−

(Tds)3

3!
+ · · ·

and choosing a first order rational function

β1Tds + β0
α1Tds + 1

= β0 + (β1 − β0α1)Tds + (. . .)(Tds)2 + . . .

values α1, β0, and β1 can be obtained by comparing the coefficients of both series.
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