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1. Consider the transfer function

G(s) =
0.01(s− 10)

s2 + 1.01s+ 0.01
,

and the closed-loop system with the plant G(s) and the proportional controller C(s) = Kp

shown in Figure 1.

r(t) e(t)
C(s)

u(t)
G(s)

y(t)

−

Figure 1: Closed-loop system

a) Let Kp = −1. Is the system stable? Give reasons by using Routh criterion.
(5 points)
Solution:
If Kp = −1 the closed-loop transfer function is

Gcl =
−0.01(s− 10)

s2 + s+ 0.11

Constructing a Routh array as follow:

s2 1 0.11

s1 1 0

s0

−

∣∣∣∣∣1 0.11

1 0

∣∣∣∣∣
1

= 0.11

There is no sign change, then from Routh criterion the system is stable. �

b) Determine the range of Kp ∈ R for which the closed-loop system is stable. (5 points)
Solution:
The closed-loop transfer function is

Gcl(s) =
Kp(0.01(s− 1))

s2 + (1.01 + 0.01Kp)s+ (0.01− 0.1Kp)
.
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Using Routh array

s2 1 0.01− 0.1Kp

s1 1.01 + 0.01Kp 0

s0

−

∣∣∣∣∣ 1 0.01− 0.1Kp

1.01 + 0.01Kp 0

∣∣∣∣∣
1.01 + 0.01Kp

= 0.01− 0.1Kp

To make the system stable 1.01 + 0.01Kp and 0.01− 0.1Kp must be positive. Then

0.01− 0.1Kp > 0 and 1.01 + 0.01Kp > 0

−101 < Kp < 0.1

�

c) In Figure 2 the step responses of the closed-loop system with different proportional
controllers are shown. Assign the following controllers

(i) Kp = −95 (ii) Kp = −20π

(iii) Kp = 2.5 (iv) Kp = −5

to the matching figures and give reasons for your choice. (10 points)
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Figure 2: Step response
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Solution:
From (b) Kp must be less than 0.1, it is obvious that Kp = 2.5 leads the closed-loop be
unstable and (iii) is matching with Figure (a).

For negative values of Kp, we have the following analysis:

(i) Kp = −9.5 The characteristic equation of the closed-loop system is

s2 + (0.06)s+ 9.51 = 0

ωn =
√
9.51 = 3.08

ζ =
0.06

2(3.08)
= 0.0098

(ii) Kp = −20π The characteristic equation of the closed-loop system is

s2 + 0.382s+ 6.27 = 0

ωn =
√
6.27 = 2.5

ζ =
0.382

2(2.5)
= 0.0764

(iv) Kp = −5 The characteristic equation of the closed-loop system is

s2 + 0.96s+ 0.51 = 0

ωn =
√
0.51 = 0.714

ζ =
0.96

2(0.714)
= 0.672

From the damping ratios and the natural frequencies, we have (i) = (c), (ii) = (b), and
(iv) = (d). �

2. Consider the system with transfer function

G(s) =
1

(s+ 1)(0.5s+ 1)
.

The system G(s) is operated as plant in a control loop with a controller C(s) shown in
Figure 3.

r(t) e(t)
C(s)

u(t)
G(s)

y(t)

−

Figure 3: Closed-loop system

a) Is it possible to reach the desired damping ratio ζ > 0.7 using the given controller
C(s) = Kp > 0? What is the maximum value of Kp? (6 points)
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Solution:
For Kp > 0, the closed-loop transfer function is

Gcl(s) =
Kp

0.5s2 + 1.5s+ (1 +Kp)
,

The characteristic equation is

s2 + 3s+ 2(1 +Kp) = 0, ωn =
√

2 + 2Kp

ζ =
3

2
√
2 +Kp

We need ζ > 0.7 then

3 = 1.4
√
2 + 2Kp

Kp = 1.295

To get ζ > 0.7, we need Kp < 1.295. �

b) If we want to have the peak overshoot Mp = 16.7%, what is the maximum value
of KP for Mp < 16.7%? What is the steady-state error ess(∞) of the closed-loop
system responding to a unit step input 1(t) (8 points)
Solution:
Since Mp ≈ 1− ζ

0.6
, we have ζ = (0.933)(0.6) = 0.56. From part (a)

ωn =
√

2 + 2Kp

ζ =
3

2
√

2 + 2Kp

Kp = 3.5

The closed-loop transfer function is

E(s)

R(s)
=

0.5s2 + 1.5s+ 1

0.5s2 + 1.5s+ 4.5

=
s2 + 3s+ 2

s2 + 3s+ 9

ess(∞) = lim
s→0

s
E(s)

R(s)

1

s
=

2

9
= 0.22

�

c) We can reduce the steady-state error without increasing overshoot by using PD
controller:

C(s) = KP + TDs.
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With a unit step input, find the values of Kp and TD for the closed-loop system
shown in Figure 3 to have the steady-state error ess(∞) less than 1% while the
maximum overshoot Mp is less 16.7%. (10 points)
Solution:
We need ess(∞) < 1% = 0.01. From

L(s) =
Kp + Tds

(s+ 1)(0.5s+ 1)

The steady-state error is

1

1 +Kp

< 0.01,

Then Kp =
0.99

0.01
= 99

To get Mp < 16.7% or ζ > 0.56 (from part (b))

Gcl(s) =
L(s)

1 + L(s)
=

Kp + TDs

(s+ 1)(0.5s+ 1) +Kp + TDs

=
2(Kp + TDs)

s2 + (3 + 2TD)s+ (2 + 2Kp)

ωn =
√
2 + 2(99) = 14.14

ζ =
3 + 2Td

2(14.14)
= 0.56

TD = 6.42.

�

3. The motor whose torque-speed characteristics are shown in Figure 4 drives the load shown
in the diagram. Some of the gears have inertia.

−
+ea(t)

Ra

M
+

−
ia(t)

θm(t)

J4
J4 = 16 kg-m2

b = 32 N-m s/radθ2(t)

N1 = 10
J1 = 1 kg-m2

N2 = 20
J2 = 2 kg-m2

N3 = 10
J3 = 2 kg-m2

N4 = 20

(a)

τ (N-m)

RPM

5

600

π

ea = 5 V

(b)

Figure 4: Motor system

a) Find the transfer functions Θm(s)/Ea(s) and Θ2(s)/Ea(s). (6 points)
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Solution: From the torque-curve characteristic, we have

Kt

Ra

=
τstall

ea
= 1, Kb =

ea
ωno-load

=
1

4

Jm = J1 + (J3 + J2)

(
N1

N2

)2

+ J4

(
N1

N2

)2(
N3

N4

)2

= 3

bm = b

(
N1

N2

)2(
N3

N4

)2

= 2

We have

Θm(s)

Ea(s)
=

Kt(RaJm)

s
[
s+ 1

Jm

(
bm + KtKb

Ra

)] =
1/3

s(s+ 0.75)

Since θ2 = 1/4θm, then

Θ2(s)

Ea(s)
=

1/12

s(s+ 0.75)

�

b) From the results of part (a), find the transfer functions that relates the speed of
motor θ̇m(t) to the input armature voltage ea(t). (2 points)
Solution:
Since L{θ̇m(t)} = sΘm(s), hence

Ωm(s)

Ea(s)
=

1/3

s+ 0.7

�

c) To control the angle θ2(t) using the transfer function from part (a) in a closed-loop
configuration, which controller between

C1(s) = Kp(1 + Tds) and C2(s) = Kp

(
1 +

1

TIs

)
is the best selection to use regarding the steady-state error and transient response?
Explain your answer.(5 points)
Solution:
The closed-loop system Θm(s)/Ea(s) is a Type I system, then for the step input
(position control) the ess(∞) is always zero. To improve the transient response, we
can use D term in C1(s), while C2(s) cannot improve the damping ratio. In this
case the best controller is C1(s). �

4. Assume all operational amplifiers in the circuit of Figure 5 are ideal.
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10 kΩ
−

+

R1

C1

10 kΩ

v1(t)

A1

−

+

u(t)

R2

A2
R3

−

+

C2

vo(t)

A3

10 kΩ
10 kΩ

vi(t)

PD controller Plant

Figure 5: Op-Amp circuit

a) Show that the operation amplifier A1 is a subtracting amplifier. Namely, v1(t) =

vi(t)− vo(t). (3 points)
Solution:
At A1, let vx(t) is the virtual short voltage at the two input leg of the Op-amp. We
obtain

vx(t) =
vi(t)

2
,

vx(t)− v1(t)

R
=

vo(t)− vx(t)

R

vx(t) =
vo(t) + v1(t)

2

Then we have vi(t) = vo(t) + vi(t) or v1(t) = vi(t)− vo(t). �

b) Find the transfer function U(s)/V1(s) and Vo(s)/U(s). (4 points)
Solution:

U(s)

V1(s)
= −

(
R2C1s+

R2

R1

)
Vo(s)

U(s)
= − 1

R3C2

c) Draw a block diagram of the whole system, with the subtracting amplifier (A1) as
a summing junction. (3 points)
Solution:

vi(t) v1(t)
(
R2C1s+

R2

R1

)
u(t) 1

R3C2s

vo(t)

−

�

d) Find the closed-loop transfer function Vo(s)/Vi(s). (3 points)
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Solution:

Vo(s)

Vi(s)
=

R2C1s+
R2

R1

(R3C2 +R2C1) s+
R2

R1

=
R1R2C1s+R2

(R1R3C2 +R1R2C1) s+R2

�

e) What is the steady-state gain of the closed-loop system? (2 points)
Solution: From part (d), we have

Gcl(0) = 1

�

f) What is the time constant τ of the closed-loop system from part (d) in terms of Ri

and Ci, where i = 1, 2, 3? (2 points)
Solution:
From the closed-loop transfer function

τ =
R1R3C2 +R1R2C1

R2

�
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Formulas and Tables

Laplace Transform

f(t) F (s)

f(t)

∫ ∞

0

f(t)e−stdt

δ(t) 1

1(t)
1

s

tn1(t)
n!

sn+1

eλt1(t)
1

s− λ

df

dt
sF (s)− f(0−)

d2f

dt2
s2F (s)− sf(0−)− ḟ(0−)

Final value theorem: f(∞) = lim
s→0

sF (s)

DC Motor

• Torque-speed Curve:

Ra

Kt

τm(t) +Kbωm(t) = ea(t)

Kt

Ra

=
τstall

ea
, Kb =

ea
ωno-load

• Transfer function:

θm(s)

Ea(s)
=

Kt/(RaJm)

s
[
s+ 1

Jm

(
bm + KtKb

Ra

)]
Gear

θ2
θ1

=
r1
r2

=
N1

N2

=
τ1
τ2
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Second-order System:

General form: G(s) = K
ω2
n

s2 + 2ζωns+ ω2
n

Rise time: tr =
1.8

ωn

, Maximum overshoot: %Mp =

(
1− ζ

0.6

)
× 100

Settling time: ts =
4.6

ζωn

Electrical Network

Component Voltage-current Current-voltage Impedance

Z(s) = V (s)/I(s)

v(t) =
1

C

∫ t

0

i(τ)dτ i(t) = C
d

dt
v(t)

1

Cs
Capacitor

v(t) = Ri(t) i(t) =
1

R
v(t) R

Resistor

v(t) = L
d

dt
i(t) i(t) =

1

L

∫ t

0

v(τ)dτ Ls

Inductor

Note: All initial conditions are zero.

Translational Mechanical System

Component Force-velocity Force-displacement Impedance
ZM(s) = F (s)/X(s)

k
f(t)

x(t)

f(t) = k

∫ t

0

v(τ)dτ f(t) = kx(t) k

Spring

b

f(t)

x(t)

f(t) = bv(t) f(t) = bẋ(t) bs

Viscous damper

M f(t)

x(t)

f(t) = Mv̇(t) f(t) = Mẍ Ms2

Mass
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Rotational Mechanical System

Component Torque-angular Torque-angular Impedance
velocity displacement ZM(s) = τ̂(s)/Θ(s)

k

τ(t)θ(t)

τ(t) = k

∫ t1

0

ω(t)dt τ(t) = kθ(t) k

Spring

b

τ(t)θ(t)

τ(t) = bω(t) τ(t) = bθ̇(t) bs

Viscous damper

J τ(t)θ(t)

τ(t) = Jω̇(t) τ(t) = Jθ̈ Js2

Inertia
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