Semester: 1/2016

Schedule: INC Thu 9.30–12.20 AE Tue 13.30-16.20

Classroom: CB40704

Exams: Midterm Thu 22 July 2016 and Final Thu 28 Nov 2016

Instructors:

• Asst. Prof. DrIng. Sudchai Boonto Email: sudchai.boo@kmutt.ac.th	Office: CB40602	Tel. 02-470-9094
• Assoc. Prof. Dr.Benjamas Panomruttana Email:benjamas.pan@kmutt.ac.th	rug Office: CB40602	Tel. 02-470-9095
ourse web. Part I. http://staff kmutt a	- th/~sudchai boo/To	oching/inc3/11/

Course web: Part I: http://staff.kmutt.ac.th/~sudchai.boo/Teaching/inc341/

Part II: http://inc.kmutt.ac.th/~yoodyui/courses/inc341/

Required pre-requisites:

INC 212 Signals and Systems

Course Description:

Open-loop and Closed-loop control. Mathematical models. Analysis of transfer functions and state equations. Block diagrams. Signal-flow graph. Linearization. Analysis of steadystate response. Routh- Hurwitz criterion. Frequency-domain analysis: Nyquists stability, Polar plot, Bode plot, Nichols chart. Root locus. Compensator design in time and frequency domain. Design with MATLAB.

Learning Outcomes:

- 1. To be able to construct mathematic models of the engineering dynamic systems.
- 2. To be able to show differential equations and their Laplace transform.
- 3. Can describe the difference between open-loop and closed-loop control systems.

- 4. Can analyze the time-domain specification both in transient and steady states.
- 5. Can design controllers such as P, PI, and PID controller using time-domain analysis.
- 6. To be able to develop and analyze controllers using graphical techniques such as rootlocus, Bode plot, and Nyquist plot methods.

Course text: Norman S. Nise, "Control Systems Engineering", 6th, Wiley, 2011

Reference:

- 1. Gene F. Franklin, J. David Powell, and Abbas Emami-Naeini, "Feedback Control of Dynamic Systems", 4th, Prentice Hall, 2002
- 2. B. C. Kuo, "Automatic Control Systems", 7th, Prentice Hall, 1995
- 3. R. Dorf and R. Bishop, "Modern Control Systems", 9th, Addison-Wesley, 2001

Project:

Each student has to do some work related to realistic control problems. **Grading scheme:** Homework: 30% Midterm Exam: 35% Final: 35%

- - I reserve the right to modify the grading scheme.

Course Schedule (Tentative)

Week	Topic	Time(hours)	Lecturer
1	Introduction to feedback control systems	3	Sudchai
2	Transfer Function of Physical Systems (mechanical systems)	3	Sudchai
3	Transfer Function of Physical Systems (electrical systems) & Nonlinearity and linearisation	3	Sudchai
4	Dynamic Response: first-order systems	3	Sudchai

Week	Topic	Time(hours)	Lecturer
5	Dynamic Response: second-order systems	3	Sudchai
6	Analysis of Stability	3	Sudchai
7	Analysis of Steady-State Error	3	Sudchai
8	Midterm Exam	3	Sudchai
9	Root Locus	3	Benjamas
10	Root Locus (cont.)	3	Benjamas
11	Compensator design using root locus	3	Benjamas
12	Compensator design using root locus (cont.)	3	Benjamas
13	Frequency response analysis (Nyquists Criterion)	3	Benjamas
14	Frequency response analysis (Bode plot)	3	Benjamas
15	Compensator design using frequency response analysis	3	Benjamas
16	Final exam	3	Benjamas

Note: All topics and timetable may be changed!