Fourier Series

An Introduction

Sudchai Boonto

Department of Control Systems and Instrumentation Engineering

Fourier Sine Series

Starting with $\sin(t)$

- It has period 2π since $\sin(t + 2\pi) = \sin(t)$,
- It is an odd function, since $\sin(-t) = -\sin(t)$,

• and
$$sin(t) = 0$$
 when $t = 0$ and $t = \pi$.

Fourier Sine Series

Starting with $\sin(t)$

- It has period 2π since $\sin(t+2\pi) = \sin(t)$,
- It is an odd function, since $\sin(-t) = -\sin(t)$,
- and sin(t) = 0 when t = 0 and $t = \pi$.

The combinations of the sines is also have above three properties

Sine series

Fourier sine series is defined by:

$$S(t) = b_1 \sin(t) + b_2 \sin(2t) + b_3 \sin(3t) + \dots = \sum_{n=1}^{\infty} b_n \sin(nt)$$

If the numbers b_1, b_2, b_3, \ldots drop off quickly enough (decay rate) then the sum S(t) will inherit all three properties:

Periodic $S(t + 2\pi) = S(t)$ Odd S(-t) = -S(t) $S(0) = S(\pi) = 0$

Fourier Sine series

Fourier (Mathematicians in France) suggests that any odd periodic function S(t) could be expressed as an infinite series of sines. The problem is

$$f(t) \approx \sum_{n=1}^{\infty} b_n \sin(nt),$$

where f(t) is an odd function.

Problem!

Fourier Sine series

Fourier (Mathematicians in France) suggests that any odd periodic function S(t) could be expressed as an infinite series of sines. The problem is

$$f(t) \approx \sum_{n=1}^{\infty} b_n \sin(nt),$$

where f(t) is an odd function.

Problem!

- What are the value of b_k that multiplies $\sin(kt)$?
- Suppose $S(x) = \sum b_n \sin(nt)$. Multiply both sides by $\sin(kt)$ and integrate from 0 to π :

$$\int_0^{\pi} S(t)\sin(kt)dt = \int_0^{\pi} b_1\sin(t)\sin(kt)dt + \dots + \int_0^{\pi} b_k\sin(kt)\sin(kt)dt + \dots$$

• On the right hand side, all integrals are zero except the red on with n = k.

Orthogonal

To see why the red term of the previous slide is zero.

J

Definition

The sine are orthogonal if

$$\int_0^{\pi} \sin(nt) \sin(kt) dt = 0 \text{ if } n \neq k$$

Proof: Since

$$\int_0^\pi \cos(mt)dt = \left[\frac{\sin mt}{m}\right]_0^\pi = 0 - 0$$

Then

$$\sin(nt)\sin(kt) = \frac{1}{2}\cos((n-k)t) - \frac{1}{2}\cos((n+k)t) \Rightarrow \int_0^{\pi}\sin(t)\sin(kt)dt = 0$$

Orthogonal

If n = k

$$\int_0^{\pi} \sin(kt) \sin(kt) dt = \int_0^{\pi} \sin^2(kt) dt = \int_0^{\pi} \left(\frac{1}{2} - \frac{1}{2}\cos(2kt)\right) dt = \frac{\pi}{2}$$

Then, we have

$$\int_0^{\pi} S(t) \sin(kt) dt = \int_0^{\pi} b_k \sin(kt) \sin(kt) dt = b_k \frac{\pi}{2}$$
$$b_k = \frac{2}{\pi} \int_0^{\pi} S(t) \sin(kt) dt = \frac{1}{\pi} \int_{-\pi}^{\pi} S(t) \sin(kt) dt$$

Note: Since both S(t) and $\sin(kt)$ are odd function, the multiplication of two odd function is even function. Then integrals from $-\pi$ to 0 and from 0 to π are equal.

Sine coefficients S(-t) = -S(t)

$$b_k = \frac{2}{\pi} \int_0^{\pi} S(t) \sin(kt) dt = \frac{1}{\pi} \int_{-\pi}^{\pi} S(t) \sin(kt) dt$$

Fourier Cosine Series

Cosine series

$$C(t) = a_0 + a_1 \cos(t) + a_2 \cos(2t) + \dots = a_0 + \sum_{n=1}^{\infty} a_n \cos(nt)$$

The sum C(t) has two properties:

Periodic
$$C(t + 2\pi) = C(t)$$
 Even $C(t) = C(-t)$

Problem: What are the value of a_0 and a_k ?

Fourier Cosine Series

Cosine series

$$C(t) = a_0 + a_1 \cos(t) + a_2 \cos(2t) + \dots = a_0 + \sum_{n=1}^{\infty} a_n \cos(nt)$$

The sum C(t) has two properties:

Periodic
$$C(t + 2\pi) = C(t)$$
 Even $C(t) = C(-t)$

Problem: What are the value of a_0 and a_k ?

The constant term a_0 is the average value of the function C(t). We use the fact that $\int_0^{\pi} \cos(nt) dt = 0$. Then

$$\int_0^{\pi} C(t)dt = \int_0^{\pi} a_0 dt + 0 \ \Rightarrow \ a_0 = \frac{1}{\pi} \int_0^{\pi} C(t)dt = \frac{1}{2\pi} \int_{-\pi}^{\pi} C(t)dt$$

Fourier Cosine Series

The other cosine coefficients a_k come from the *orthogonality of cosines*.

As with sines, we multiply both sides of C(t) by $\cos(kt)$ and integrate from 0 to π :

$$\int_0^{\pi} C(t) \cos(kt) dt = \int_0^{\pi} a_0 \cos(kt) dt + \int_0^{\pi} a_1 \cos(t) \cos(kt) dt + \dots + \int_0^{\pi} a_k \cos^2(kt) dt + \dots$$

- On the right side, only the red term can be nonzero. (proof that the other terms are zero by yourself)
- We have

$$\int_0^{\pi} \cos^2(kt) dt = \int_0^{\pi} \left(\frac{1}{2} + \frac{1}{2}\cos(2kt)\right) dt = \frac{\pi}{2}$$

Then, we have

$$\int_{0}^{\pi} C(t) \cos(kt) dt = \int_{0}^{\pi} a_k \cos(kt) \cos(kt) dt = a_k \frac{\pi}{2} \Rightarrow a_k = \frac{2}{\pi} \int_{0}^{\pi} C(t) \cos(kt) dt \frac{\pi}{7/25} dt = \frac{1}{2} \int_{0}^{\pi} C(t) \cos(kt) dt = \frac{1}{2} \int_{0}^{$$

Cosine coefficients C(-t) = C(t)

$$a_{0} = \frac{1}{\pi} \int_{0}^{\pi} C(t)dt = \frac{1}{2\pi} \int_{-\pi}^{\pi} C(t)dt$$
$$a_{k} = \frac{2}{\pi} \int_{0}^{\pi} C(t)\cos(kt)dt = \frac{1}{\pi} \int_{-\pi}^{\pi} C(t)\cos(kt)dt$$

Complete Fourier Series

Since the half-period $[0, \pi]$, the sines are not orthogonal to all the cosines. $(\int_0^{\pi} \sin(t) dt$ is not zero.) So for functions F(t) that are not *odd or even*, we must move to the complete series (sines plus cosines) on the full interval.

Complete Fourier series

$$F(t) = a_0 + \sum_{n=1}^{\infty} a_n \cos(nt) + \sum_{n=1}^{\infty} b_n \sin(nt)$$

$$a_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} F(t) dt, \qquad a_k = \frac{1}{\pi} \int_{-\pi}^{\pi} F(t) \cos(kt) dt$$

$$b_k = \frac{1}{\pi} \int_{-\pi}^{\pi} F(t) \sin(kt) dt$$

Note:

$$C(t) = F_{\text{even}}(t) = \frac{F(t) + F(-t)}{2}, \qquad S(t) = F_{\text{odd}} = \frac{F(t) - F(-t)}{2}$$

Find the Fourier sine coefficients b_k of the odd square wave SW(t).

Solution: We have no cosine terms, since SW(t) is an odd function (You could proof it that all a_i terms are zeros). For k = 1, 2, ... Since S(t) = 1 between 0 and π .

$$b_k = \frac{2}{\pi} \int_0^{\pi} S(t) \sin(kt) dt = \frac{2}{\pi} \int_0^{\pi} \sin(kt) dt = \frac{2}{\pi} \left[\frac{-\cos(kt)}{k} \right]_0^{\pi}$$

Find the Fourier sine coefficients b_k of the odd square wave SW(t).

Solution: We have no cosine terms, since SW(t) is an odd function (You could proof it that all a_i terms are zeros). For k = 1, 2, ... Since S(t) = 1 between 0 and π .

$$b_{k} = \frac{2}{\pi} \int_{0}^{\pi} S(t) \sin(kt) dt = \frac{2}{\pi} \int_{0}^{\pi} \sin(kt) dt = \frac{2}{\pi} \left[\frac{-\cos(kt)}{k} \right]_{0}^{\pi}$$

$$k = 1, \frac{4}{\pi} \qquad k = 5, \frac{4}{5\pi} \qquad \text{in general}$$

$$k = 2, 0 \qquad k = 6, 0$$

$$k = 3, \frac{4}{3\pi} \qquad k = 7, \frac{4}{7\pi} \qquad b_{k} = \left\{ \frac{2}{\pi} \frac{2}{k}, k = \text{ odd} \\ 0, k = \text{ even } 10/25 \right\}$$

Example: ramp function

Find the cosine coefficients of the even ramp RR(t) function.

Solution: You can see that b_k terms are zero because the RR(t) is an even function. Instead of direct find the Fourier coefficient of the series, we can integrate the square wave series SW(t) and add a_0 . The average ramp height is $a_0 = \pi/2$. Since the sine series of the SW(t) is:

$$SW(t) = \frac{4}{\pi} \left[\frac{\sin(t)}{1} + \frac{\sin(3t)}{3} + \frac{\sin(5t)}{5} + \frac{\sin(7t)}{7} + \cdots \right]$$

Then,

$$RR(t) = \frac{\pi}{2} - \frac{\pi}{4} \left[\frac{\cos(t)}{1^2} + \frac{\cos(3t)}{3^2} + \frac{\cos(5t)}{5^2} + \frac{\cos(7t)}{7^2} + \cdots \right]$$
 12/25

Example: Up-down function

Since the UP(t) is the derivative of the square wave function. Then take the derivative of every term to produce cosines in the up-down delta function:

$$UD(t) = \frac{4}{\pi} \left[\cos(t) + \cos(3t) + \cos(5t) + \cos(7t) + \cdots \right]$$

Find the (cosine) coefficients of the *delta function* $\delta(t)$, made 2π -periodic. The impulse $\delta(t)$ occurs at t = 0 and

$$\int_{-\infty}^{\infty} \delta(t) dt = 1 \qquad \text{with } 2\pi - \text{periodic} \qquad \int_{-\pi}^{\pi} \delta(t) dt = 1$$

Find the (cosine) coefficients of the *delta function* $\delta(t)$, made 2π -periodic. The impulse $\delta(t)$ occurs at t = 0 and

$$\int_{-\infty}^{\infty} \delta(t) dt = 1 \qquad \text{with } 2\pi - \text{periodic} \qquad \int_{-\pi}^{\pi} \delta(t) dt = 1$$

Imagine that the $\delta(t)$ is an even function. We have

$$a_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} \delta(t) dt = \frac{1}{2\pi} \qquad a_k = \frac{1}{\pi} \int_{-\pi}^{\pi} \delta(t) \cos(kt) dt = \frac{1}{\pi}, \forall k$$

Then the series for the delta function has all cosines in equal amounts: No decay.

$$\delta(t) = \frac{1}{2\pi} + \frac{1}{\pi} \left[\cos(t) + \cos(2t) + \cos(3t) + \cdots \right]$$
$$= \frac{1}{2\pi} \left[1 + 2\cos(t) + 2\cos(2t) + 2\cos(3t) + \cdots \right]$$

Since $2\cos(t) = e^{jt} + e^{-jt}$, we have

$$\begin{split} \delta_N &= \frac{1}{2\pi} \left[1 + e^{jt} + e^{-jt} + \dots + e^{jNt} + e^{-jNt} \right] \\ &= \frac{1}{2\pi} \left[1 + e^{jt} + e^{j2t} + \dots + e^{jNt} + e^{-jt} + e^{-j2t} + \dots + e^{-jNt} \right] \\ &= \frac{1}{2\pi} \left[\frac{1 - e^{j(N+1)x}}{1 - e^{jx}} + \frac{-1 + e^{-jNx}}{1 - e^{jx}} \right] \\ &= \frac{1}{2\pi} \frac{e^{j(N+1)x} + e^{-jNx}}{1 - e^{jx}} = \frac{e^{j\frac{1}{2}x} \left(e^{jNx} e^{j\frac{1}{2}x} + e^{-jNx} e^{-j\frac{1}{2}x} \right)}{e^{j\frac{1}{2}x} \left(e^{-j\frac{1}{2}x} + e^{j\frac{1}{2}x} \right)} \\ &= \frac{1}{2\pi} \frac{\sin(N + \frac{1}{2})t}{\sin(\frac{1}{2}t)} \end{split}$$

Note: we use the fact that

$$\sum_{k=0}^{N} a^{k} = \frac{1 - a^{N+1}}{1 - a}$$

Find the a_k and b_k if

$$F(t) = \begin{cases} \frac{1}{h}, & 0 < t < h\\ 0, & h < t < 2\pi \end{cases}$$

Solution: The integrals for a_0 and a_k and b_k stop at t = h where F(t) drops to zero. The coefficients decay like 1/k because of the jump at x = 0 and the drop at x = h:

$$a_0 = \frac{1}{2\pi} \int_0^h \frac{1}{h} dt = \frac{1}{2\pi} = \text{average}$$
$$a_k = \frac{1}{\pi h} \int_0^h \cos(kt) dt = \frac{\sin(kh)}{\pi kh}$$
$$b_k = \frac{1}{\pi h} \int_0^h \sin(kt) dt = \frac{1 - \cos(kh)}{\pi kh}$$

Matlab code

```
% fourier plot
close all; clear all;
dx = 0.01; L = 2*pi;
x = 0:dx:L;
xp = 0:dx:pi-dx;
% one fourth of data point;
n = length(x);
npart = length(xp);
% define function
f = zeros(size(x));
f(1) = 0; f(2:npart) = -1;
f(npart+1:2*npart) = 1;
f(2*npart+1) = 0;
```

Matlab code

```
for N = 1:3,
                         % three terms
    hold off:
    % plot original function
    plot(x, f, 'k', 'linewidth', 1.2)
    grid;
    % determine sine and cosine terms and sum them all
    A0 = sum(f.*ones(size(x))) * dx * 2/L:
    fFS = A0/2:
    for k = 1:N
        Ak = sum(f.*cos(2*pi*k*x/L))*dx*2/L;
        Bk = sum(f.*sin(2*pi*k*x/L))*dx*2/L;
        fFS = fFS + Ak \cdot cos(2 \cdot k \cdot pi \cdot x/L) \dots
             + Bk*sin(2*k*pi*x/L);
    end
    hold on:
    plot(x,fFS, 'r-', 'linewidth', 1.2);
    axis([-0.1,2*pi+0.1,-1.7, 1.7]);
end
```

Matlab code

Complex Exponentials $c_k e^{-jkt}$

We can combine a_k and b_k into one c_k .

Complex Fourier series

$$F(t) = c_0 + c_1 e^{jt} + c_{-1} e^{-jt} + \dots = \sum_{n=-\infty}^{\infty} c_n e^{jnt}$$

- Every $c_n = c_{-n}$, we can combine e^{jnt} with e^{-jnt} into $2\cos(nt)$. Then the summation above is the cosine series for an even function.
- ▶ If every $c_n = -c_{-n}$, we use $e^{jnt} = -e^{-jnt} = 2j\sin(nt)$, then the summation is the sine series for an odd function and the c_k are pure imaginary.
- To find c_k , we start with multiplication of F(t) and e^{-jkt} and integrate from $-\pi$ to π :

$$\int_{-\pi}^{\pi} F(t)e^{-jkt}dt = \int_{-\pi}^{\pi} c_0 e^{-jkt}dt + \int_{-\pi}^{\pi} c_1 e^{jt} e^{-jkt}dt + \cdots + \int_{-\pi}^{\pi} c_k e^{jkt} e^{-jkt}dt + \cdots$$

$$(1/25)$$

Complex Exponentials $c_k e^{-jkt}$

Every integral on the right hand side is zero:

$$\int_{-\pi}^{\pi} c_0 e^{-jt} dt = \int_{-\pi}^{\pi} c_0 \left(\cos(kt) - j\sin(kt) \right) dt = 0, \qquad \omega = k \Rightarrow 2\pi = kT$$
$$\int_{-\pi}^{\pi} c_1 e^{jt} e^{-jkt} dt = \int_{-\pi}^{\pi} c_1 e^{-j(k-1)t} dt = \int_{-\pi}^{\pi} c_1 \left[\cos((k-1)t) - j\sin((k-1)t) \right] dt = 0,$$
$$\omega = k - 1 \Rightarrow 2\pi = (k-1)T$$

Complex Exponentials $c_k e^{-jkt}$

Every integral on the right hand side is zero:

$$\int_{-\pi}^{\pi} c_0 e^{-jt} dt = \int_{-\pi}^{\pi} c_0 \left(\cos(kt) - j\sin(kt) \right) dt = 0, \qquad \omega = k \Rightarrow 2\pi = kT$$
$$\int_{-\pi}^{\pi} c_1 e^{jt} e^{-jkt} dt = \int_{-\pi}^{\pi} c_1 e^{-j(k-1)t} dt = \int_{-\pi}^{\pi} c_1 \left[\cos((k-1)t) - j\sin((k-1)t) \right] dt = 0,$$
$$\omega = k - 1 \Rightarrow 2\pi = (k-1)T$$

The red term is

$$\int_{-\pi}^{\pi} c_k e^{jkt} e^{-jkt} dt = \int_{-\pi}^{\pi} c_k dt = 2\pi c_k$$
$$\int_{-\pi}^{\pi} F(t) e^{-jkt} dt = 2\pi c_k, \text{ for } k = 0, \pm 1, \dots, l$$

Then,

$$c_{k} = \frac{1}{2\pi} \int_{-\pi}^{\pi} F(t) e^{-jkt} dt \text{ for } k = 0, \pm 1, \dots, l$$

$$c_{0} = a_{0} \text{ the every of } F(t)$$
22/25

Find c_k for the 2π -periodic shifted box

$$F(t) = \begin{cases} 1 & , s \le t \le s + h \\ 0 & , \text{ elsewhere in } [-\pi, \pi] \end{cases}$$

Solution: We have $(T = 2\pi, \omega = 1)$

$$c_k = \frac{1}{2\pi} \int_s^{s+h} 1e^{-jkt} dt = \frac{1}{2\pi} \left[\frac{e^{-jkt}}{-jk} \right]_s^{s+h} = e^{-jks} \left(\frac{1 - e^{-jkh}}{2\pi jk} \right)$$

Find c_k for the 2π -periodic shifted box

$$F(t) = \begin{cases} 1 & , s \le t \le s + h \\ 0 & , \text{ elsewhere in } [-\pi, \pi] \end{cases}$$

Solution: We have $(T = 2\pi, \omega = 1)$

$$c_k = \frac{1}{2\pi} \int_s^{s+h} 1e^{-jkt} dt = \frac{1}{2\pi} \left[\frac{e^{-jkt}}{-jk} \right]_s^{s+h} = e^{-jks} \left(\frac{1 - e^{-jkh}}{2\pi jk} \right)$$

Note: Actually, shift F(t) to $F(t-s) \leftrightarrow$ Multiply every c_k by e^{-jks} .

From the previous example, if we shift F(t) to the left by s = h/2, the pulse becomes symmetry around t = 0. This even function $F_c(t)$ equals 1 on the interval from -h/2 to h/2. We don't need to re-calculate the c_k .

$$s = -\frac{h}{2}$$
 $c_k = e^{-jk(-\frac{h}{2})} \left(\frac{1 - e^{-jkh}}{2\pi jk}\right) = \frac{1}{2\pi} \frac{\sin(kh/2)}{k/2}$

From the previous example, if we shift F(t) to the left by s = h/2, the pulse becomes symmetry around t = 0. This even function $F_c(t)$ equals 1 on the interval from -h/2 to h/2. We don't need to re-calculate the c_k .

$$s = -\frac{h}{2}$$
 $c_k = e^{-jk(-\frac{h}{2})} \left(\frac{1 - e^{-jkh}}{2\pi jk}\right) = \frac{1}{2\pi} \frac{\sin(kh/2)}{k/2}$

$$c_0 = \frac{1}{2\pi} \int_{-h/2}^{h/2} 1dt = \frac{1}{2\pi} \left[t\right]_{-h/2}^{h/2} = \frac{h}{2\pi}$$

From the previous example, if we shift F(t) to the left by s = h/2, the pulse becomes symmetry around t = 0. This even function $F_c(t)$ equals 1 on the interval from -h/2 to h/2. We don't need to re-calculate the c_k .

$$s = -\frac{h}{2}$$
 $c_k = e^{-jk(-\frac{h}{2})} \left(\frac{1 - e^{-jkh}}{2\pi jk}\right) = \frac{1}{2\pi} \frac{\sin(kh/2)}{k/2}$

$$c_0 = \frac{1}{2\pi} \int_{-h/2}^{h/2} 1dt = \frac{1}{2\pi} \left[t\right]_{-h/2}^{h/2} = \frac{h}{2\pi}$$

Then

$$\frac{F_c(t)}{h} = \frac{1}{2\pi} \sum_{k=-\infty}^{\infty} \frac{\sin(kh/2)}{kh/2} e^{jkt} = \frac{1}{2\pi} \sum_{k=-\infty}^{\infty} \operatorname{sinc}\left(\frac{kh}{2}\right) e^{jkt}$$

- 1. Naresh, K. Sinha, *Linear Systems*, John Wiley & Sons, Inc., 1991.
- 2. Lathi, B. P., *Signal Processing & Linear Systems*, Berkeley-Cambridge Press, 1998.
- 3. Watcharapong Khovidhungij, *Signals, Systems, and Control*, Chulalongkorn University Press, 2016
- Strang, G., Differential Equations and Linear Algebra, Wellesley-Cambridge Press, 2014