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Fourier Sine Series

Starting with sin(t)

I It has period 2π since sin(t+ 2π) = sin(t),
I It is an odd function, since sin(−t) = − sin(t),
I and sin(t) = 0 when t = 0 and t = π.

The combinations of the sines is also have above three properties

Sine series
Fourier sine series is defined by:

S(t) = b1 sin(t) + b2 sin(2t) + b3 sin(3t) + · · · =
∞∑

n=1

bn sin(nt)

If the numbers b1, b2, b3, . . . drop off quickly enough (decay rate) then the sum S(t)

will inherit all three properties:

Periodic S(t+ 2π) = S(t) Odd S(−t) = −S(t) S(0) = S(π) = 0
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Fourier Sine series

Fourier (Mathematicians in France) suggests that any odd periodic function S(t) could
be expressed as an infinite series of sines. The problem is

f(t) ≈
∞∑

n=1

bn sin(nt),

where f(t) is an odd function.

Problem!

I What are the value of bk that multiplies sin(kt)?
I Suppose S(x) =

∑
bn sin(nt). Multiply both sides by sin(kt) and integrate from

0 to π:∫ π

0
S(t) sin(kt)dt =

∫ π

0
b1 sin(t) sin(kt)dt+ · · ·+

∫ π

0
bk sin(kt) sin(kt)dt+ · · ·

I On the right hand side, all integrals are zero except the red on with n = k.
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Orthogonal

To see why the red term of the previous slide is zero.

Definition
The sine are orthogonal if

∫ π

0
sin(nt) sin(kt)dt = 0 if n ̸= k

Proof: Since

∫ π

0
cos(mt)dt =

[
sinmt

m

]π
0

= 0− 0

Then

sin(nt) sin(kt) =
1

2
cos((n− k)t)−

1

2
cos((n+ k)t) ⇒

∫ π

0
sin(t) sin(kt)dt = 0
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Orthogonal

If n = k

∫ π

0
sin(kt) sin(kt)dt =

∫ π

0
sin2(kt)dt =

∫ π

0

(
1

2
−

1

2
cos(2kt)

)
dt =

π

2

Then, we have

∫ π

0
S(t) sin(kt)dt =

∫ π

0
bk sin(kt) sin(kt)dt = bk

π

2

bk =
2

π

∫ π

0
S(t) sin(kt)dt =

1

π

∫ π

−π
S(t) sin(kt)dt

Note: Since both S(t) and sin(kt) are odd function, the multiplication of two odd
function is even function. Then integrals from −π to 0 and from 0 to π are equal.

Sine coefficients S(−t) = −S(t)

bk =
2

π

∫ π

0
S(t) sin(kt)dt =

1

π

∫ π

−π
S(t) sin(kt)dt
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Fourier Cosine Series

Cosine series

C(t) = a0 + a1 cos(t) + a2 cos(2t) + · · · = a0 +
∞∑

n=1

an cos(nt)

The sum C(t) has two properties:

Periodic C(t+ 2π) = C(t) Even C(t) = C(−t)

Problem: What are the value of a0 and ak?

The constant term a0 is the average value of the function C(t). We use the fact that∫ π
0 cos(nt)dt = 0. Then

∫ π

0
C(t)dt =

∫ π

0
a0dt+ 0 ⇒ a0 =

1

π

∫ π

0
C(t)dt =

1

2π

∫ π

−π
C(t)dt
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Fourier Cosine Series

The other cosine coefficients ak come from the orthogonality of cosines.
I As with sines, we multiply both sides of C(t) by cos(kt) and integrate from 0 to

π: ∫ π

0
C(t) cos(kt)dt =

∫ π

0
a0 cos(kt)dt+

∫ π

0
a1 cos(t) cos(kt)dt+ · · ·

+

∫ π

0
ak cos2(kt)dt+ · · · .

I On the right side, only the red term can be nonzero. (proof that the other terms
are zero by yourself)

I We have

∫ π

0
cos2(kt)dt =

∫ π

0

(
1

2
+

1

2
cos(2kt)

)
dt =

π

2

Then, we have

∫ π

0
C(t) cos(kt)dt =

∫ π

0
ak cos(kt) cos(kt)dt = ak

π

2
⇒ ak =

2

π

∫ π

0
C(t) cos(kt)dt
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Fourier Cosine Series

Cosine coefficients C(−t) = C(t)

a0 =
1

π

∫ π

0
C(t)dt =

1

2π

∫ π

−π
C(t)dt

ak =
2

π

∫ π

0
C(t) cos(kt)dt =

1

π

∫ π

−π
C(t) cos(kt)dt
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Complete Fourier Series

Since the half-period [0, π], the sines are not orthogonal to all the cosines.
(
∫ π
0 sin(t)dt is not zero.) So for functions F (t) that are not odd or even, we must move

to the complete series (sines plus cosines) on the full interval.

Complete Fourier series

F (t) = a0 +
∞∑

n=1

an cos(nt) +
∞∑

n=1

bn sin(nt)

a0 =
1

2π

∫ π

−π
F (t)dt, ak =

1

π

∫ π

−π
F (t) cos(kt)dt,

bk =
1

π

∫ π

−π
F (t) sin(kt)dt

Note:

C(t) = Feven(t) =
F (t) + F (−t)

2
, S(t) = Fodd =

F (t)− F (−t)

2

9/25



Example: odd function

Find the Fourier sine coefficients bk of the odd square wave SW (t).

t

SW (t) = 1

−π π0 2π

Solution: We have no cosine terms, since SW (t) is an odd function (You could proof
it that all ai terms are zeros). For k = 1, 2, . . . Since S(t) = 1 between 0 and π.

bk =
2

π

∫ π

0
S(t) sin(kt)dt =

2

π

∫ π

0
sin(kt)dt =

2

π

[
− cos(kt)

k

]π
0

I k = 1, 4
π

I k = 2, 0

I k = 3, 4
3π

I k = 4, 0

I k = 5, 4
5π

I k = 6, 0

I k = 7, 4
7π

I k = 8, 0

I in general

bk =


2

π

2

k
, k = odd

0, k = even
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Example: odd function

1

−1

−π

π

0
t

Dashed curve: 4

π

sin(t)

1

Solid curve: 4

π

(
sin(t)

1
+

sin(3t)

3

)

1

−1

−π

π

0
t

Solid curve:
4

π

(
sin(t)

1
+ · · ·+

sin(9t)

9

)
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Example: ramp function

t

RR(t) = |t|

−π π0 2π

Find the cosine coefficients of the even ramp RR(t) function.

Solution: You can see that bk terms are zero because the RR(t) is an even function.
Instead of direct find the Fourier coefficient of the series, we can integrate the square
wave series SW (t) and add a0 . The average ramp height is a0 = π/2. Since the sine
series of the SW (t) is:

SW (t) =
4

π

[
sin(t)

1
+

sin(3t)

3
+

sin(5t)

5
+

sin(7t)

7
+ · · ·

]

Then,

RR(t) =
π

2
−

π

4

[
cos(t)

12
+

cos(3t)

32
+

cos(5t

52
+

cos(7t)

72
+ · · ·

]
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Example: Up-down function

t
UD(t)

−π π0 2π

2δ(t) 2δ(t− 2π)

−2δ(t− 2π)−2δ(t + π)

Derivative of Square Wave

Since the UP (t) is the derivative of the square wave function. Then take the
derivative of every term to produce cosines in the up-down delta function:

UD(t) =
4

π
[cos(t) + cos(3t) + cos(5t) + cos(7t) + · · · ]
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The Fourier Series for a Delta Function

Find the (cosine) coefficients of the delta function δ(t), made 2π-periodic. The
impulse δ(t) occurs at t = 0 and

∫ ∞

−∞
δ(t)dt = 1 with 2π − periodic

∫ π

−π
δ(t)dt = 1

Imagine that the δ(t) is an even function. We have

a0 =
1

2π

∫ π

−π
δ(t)dt =

1

2π
ak =

1

π

∫ π

−π
δ(t) cos(kt)dt =

1

π
,∀k

Then the series for the delta function has all cosines in equal amounts: No decay.

δ(t) =
1

2π
+

1

π
[cos(t) + cos(2t) + cos(3t) + · · · ]

=
1

2π
[1 + 2 cos(t) + 2 cos(2t) + 2 cos(3t) + · · · ]
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The Fourier Series for a Delta Function

Since 2 cos(t) = ejt + e−jt , we have

δN =
1

2π

[
1 + ejt + e−jt + · · ·+ ejNt + e−jNt

]
=

1

2π

[
1 + ejt + ej2t + · · ·+ ejNt + e−jt + e−j2t + · · ·+ e−jNt

]
=

1

2π

[
1− ej(N+1)x

1− ejx
+

−1 + e−jNx

1− ejx

]

=
1

2π

ej(N+1)x + e−jNx

1− ejx
=

ej
1
2
x
(
ejNxej

1
2
x + e−jNxe−j 1

2
x
)

ej
1
2
x
(
e−j 1

2
x + ej

1
2
x
)

=
1

2π

sin(N + 1
2
)t

sin( 1
2
t)

Note: we use the fact that

N∑
k=0

ak =
1− aN+1

1− a
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The Fourier Series for a Delta Function

δ5(t) height 11/2π

δ10(t) height 21/2π

−π π

0
t
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Example

Find the ak and bk if

F (t) =


1

h
, 0 < t < h

0, h < t < 2π

Solution: The integrals for a0 and ak and bk stop at t = h where F (t) drops to zero.
The coefficients decay like 1/k because of the jump at x = 0 and the drop at x = h :

a0 =
1

2π

∫ h

0

1

h
dt =

1

2π
= average

ak =
1

πh

∫ h

0
cos(kt)dt =

sin(kh)

πkh

bk =
1

πh

∫ h

0
sin(kt)dt =

1− cos(kh)

πkh
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Matlab code

% fourier plot
close all; clear all;
dx = 0.01; L = 2*pi;
x = 0:dx:L;
xp = 0:dx:pi-dx;

% one fourth of data point;
n = length(x);
npart = length(xp);

% define function
f = zeros(size(x));
f(1) = 0; f(2:npart) = -1;
f(npart+1:2*npart) = 1;
f(2*npart+1) = 0;
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Matlab code

for N = 1:3, % three terms
hold off;
% plot original function
plot(x, f, 'k', 'linewidth', 1.2)
grid;

% determine sine and cosine terms and sum them all
A0 = sum(f.*ones(size(x))) * dx * 2/L;
fFS = A0/2;
for k = 1:N

Ak = sum(f.*cos(2*pi*k*x/L))*dx*2/L;
Bk = sum(f.*sin(2*pi*k*x/L))*dx*2/L;
fFS = fFS + Ak*cos(2*k*pi*x/L) ...

+ Bk*sin(2*k*pi*x/L);
end
hold on;
plot(x,fFS, 'r-', 'linewidth', 1.2);
axis([-0.1,2*pi+0.1,-1.7, 1.7]);

end
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Matlab code

- 0

-1.5

-1

-0.5

0

0.5

1

1.5 No.Terms: 3
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Complex Exponentials cke−jkt

We can combine ak and bk into one ck .

Complex Fourier series

F (t) = c0 + c1e
jt + c−1e

−jt + · · · =
∞∑

n=−∞
cne

jnt

I Every cn = c−n , we can combine ejnt with e−jnt into 2 cos(nt). Then the
summation above is the cosine series for an even function.

I If every cn = −c−n , we use ejnt = −e−jnt = 2j sin(nt), then the summation is
the sine series for an odd function and the ck are pure imaginary.

I To find ck , we start with multiplication of F (t) and e−jkt and integrate from −π

to π : ∫ π

−π
F (t)e−jktdt =

∫ π

−π
c0e

−jktdt+

∫ π

−π
c1e

jte−jktdt+ · · ·

+

∫ π

−π
cke

jkte−jktdt+ · · · 21/25



Complex Exponentials cke−jkt

Every integral on the right hand side is zero:

∫ π

−π
c0e

−jtdt =

∫ π

−π
c0 (cos(kt)− j sin(kt)) dt = 0, ω = k ⇒ 2π = kT∫ π

−π
c1e

jte−jktdt =

∫ π

−π
c1e

−j(k−1)tdt =

∫ π

−π
c1 [cos((k − 1)t)− j sin((k − 1)t)] dt = 0,

ω = k − 1 ⇒ 2π = (k − 1)T

The red term is ∫ π

−π
cke

jkte−jktdt =

∫ π

−π
ckdt = 2πck∫ π

−π
F (t)e−jktdt = 2πck, for k = 0,±1, . . . , l

Then,

ck =
1

2π

∫ π

−π
F (t)e−jktdt for k = 0,±1, . . . , l

c0 = a0 the every of F (t)
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Example

s h 2π

1

0
t

F (t)
F (t − s)

F (t)

Find ck for the 2π-periodic shifted box

F (t) =

1 , s ≤ t ≤ s+ h

0 , elsewhere in [−π, π]

Solution: We have (T = 2π, ω = 1)

ck =
1

2π

∫ s+h

s
1e−jktdt =

1

2π

[
e−jkt

−jk

]s+h

s

= e−jks

(
1− e−jkh

2πjk

)

Note: Actually, shift F (t) to F (t− s) ↔ Multiply every ck by e−jks .
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Example

From the previous example, if we shift F (t) to the left by s = h/2, the pulse becomes
symmetry around t = 0. This even function Fc(t) equals 1 on the interval from −h/2

to h/2. We don’t need to re-calculate the ck .

s = −
h

2
ck = e−jk(−h

2
)

(
1− e−jkh

2πjk

)
=

1

2π

sin(kh/2)

k/2

c0 =
1

2π

∫ h/2

−h/2
1dt =

1

2π
[t]

h/2
−h/2

=
h

2π

Then

Fc(t)

h
=

1

2π

∞∑
k=−∞

sin(kh/2)

kh/2
ejkt =

1

2π

∞∑
k=−∞

sinc
(
kh

2

)
ejkt
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