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Motivation

The Laplace Transform convert integral and differential equations into

algebraic equations.

It can applies to

� general signal, not just sinusoids

� handles transient conditions

It can be used to analyze

� Linear Constant Coefficient Ordinary Differential Equation

(LCCODE) or LTI system

� complicated RLC circuits with sources

� complicated systems with integrators, differentiators, gains
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The Unilateral Laplace transform

We will be interested in signals defined for t > 0.

Definition

Let f(t), t > 0, be a given signal (function). The Unilateral Laplace

transform of a signal (function) f(t) is defined by

F (s) = L{f(t)} =

∫ ∞

0
f(t)e−stdt,

for those s ∈ C for which the integral exists.

� F is a complex-values function of complex numbers

� s is called the (complex) frequency variable, with units sec−1; t is

called the time variable (in sec); st is unitless.

� For convenience, we will call the unilateral laplace transform as the

laplace transform.

Lecture 5: Laplace Transform and Its Applications J 4/62 I }



The Laplace transform
Example

Exponential function: f(t) = et

F (s) =

∫ ∞

0
ete−stdt =

∫ ∞

0
e(1−s)tdt =

1

1− s
e(1−s)t

∣∣∣∣∞
0

=
1

s− 1

provide we can say e(1−s)t → 0 as t → ∞, which is true for Re s > 1:

|e(1−s)t| = |e−j(Im s)t|︸ ︷︷ ︸
=1

|e(1−Re s)t| = e(1−Re s)t

� the integral defining F (s) exists for all s ∈ C with Re s > 1. This

condition is called region of convergence (ROC) of F (s).

� however the resulting formula for F (s) makes sense for all s ∈ C
excepts s = 1.
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The Laplace transform
Example cont.

Constant or unit step function: f(t) = u(t) (for t ≥ 0)

F (s) =

∫ ∞

0
e−stdt = −1

s
e−st

∣∣∣∣∞
0

=
1

s

provided we can say e−st → 0 as t → ∞, which is true for Re s > 0 since

|e−st| = |e−j(Im s)t||e−(Re s)t| = e−(Re s)t

� the integral defining F (s) makes sense for all s with Re s > 0.

� however the resulting formula for F (s) makes sense for all s except

s = 0.
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The Laplace transform
Example cont.

Sinusoid : first express f(t) = cosωt as

f(t) =
1

2
ejωt +

1

2
e−jωt

now we can find F as

F (s) =

∫ ∞

0
e−st

(
1

2
ejωt +

1

2
e−jωt

)
dt

=
1

2

∫ ∞

0
e(−s+jω)tdt+

1

2

∫ ∞

0
e(−s−jω)tdt

=
1

2

1

s− jω
+

1

2

1

s+ jω

=
s

s2 + ω2

(valid for Re s > 0; final formula for s ̸= ±jω)
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The Laplace transform
Example cont.

Powers of t: f(t) = tn, (n ≥ 1)

F (s) =

∫ ∞

0
tne−stdt = tn

(
−e−st

s

)∣∣∣∣∞
0

+
n

s

∫ ∞

0
tn−1e−stdt

=
n

s
L(tn−1)

provided tne−st → 0 if t → ∞, which is true for Re s > 0. Applying the

formular recursively, we obtain

F (s) =
n!

sn+1

valid for Re s > 0; final formula exists for all s ̸= 0.
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The Laplace transform
Impulses at t = 0

If f(t) contains impulses at t = 0 we choose to include them in the

integral defining F (s):

F (s) =

∫ ∞

0−
f(t)e−stdt

example: impulse function, f(t) = δ(t)

F (s) =

∫ ∞

0−
δ(t)e−stdt = e−st

∣∣
t=0

= 1 sampling property

Similarly for f(t) = δ(k)(t) we have

F (s) =

∫ ∞

0−
δ(k)(t)e−stdt = (−1)k

dk

dtk
e−st

∣∣∣∣
t=0

= ske−st
∣∣∣
t=0

= sk
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The Laplace transform
Multiplication by t

Let f(t) be a signal and define

g(t) = tf(t) then we have G(s) = − d

ds
F (s)

To verify formula, just differentiate both sides of

F (s) =

∫ ∞

0
e−stf(t)dt

with respect to s to get

d

ds
F (s) =

∫ ∞

0
(−t)e−stf(t)dt =

∫ ∞

0
(−t)f(t)e−stdt

= −
∫ ∞

0
tf(t)e−stdt = −G(s)
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The Laplace transform
Multiplication by t examples

Examples:

� f(t) = e−t, g(t) = te−t

L
{
te−t

}
= − d

ds

1

s+ 1
=

1

(s+ 1)2

� f(t) = te−t, g(t) = t2e−t

L
{
t2e−t

}
= − d

ds

1

(s+ 1)2
=

2

(s+ 1)3

� in general

L
{
tke−λt

}
=

k!

(s+ λ)k+1
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The Laplace transform
Inverse Laplace transform

In principle we can recover f(t) from F (s) via

f(t) =
1

2πj

∫ σ+j∞

σ−j∞
F (s)estds

where σ is large enough that F (s) is defined for Re s ≥ σ.

In practical, no one uses this formula!.
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Inverse Laplace Transform

Finding the inverse Laplace transform by using the standard formula

f(t) =
1

2πj

∫ σ+j∞

σ−j∞
F (s)estds

is difficult and tedious.

� We can find the inverse transforms from the transform table.

� All we need is to express F (s) as a sum of simpler functions of the

forms listed in the Laplace transform table.

� Most of the transforms F (s) of practical interest are rational

functions: that is ratios of polynomials in s.

� Such functions can be expressed as a sum of simpler functions by

using partial fraction expansion.
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Inverse Laplace Transform
Partial fraction expansion

Example: Find the inverse Laplace transform of
7s− 6

s2 − s− 6
.

F (s) =
7s− 6

(s+ 2)(s− 3)
=

k1

s+ 2
+

k2

s− 3

Using a “cover up” method:

k1 =
7s− 6

s− 3

∣∣∣∣
s=−2

=
−14− 6

−2− 3
= 4

k2 =
7s− 6

s+ 2

∣∣∣∣
s=3

=
21− 6

3 + 2
= 3

Therefore

F (s) =
7s− 6

(s+ 2)(s− 3)
=

4

s+ 2
+

3

s− 3
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Inverse Laplace Transform
Partial fraction expansion cont.

Using the table of Laplace transforms, we obtain

f(t) = L−1

{
4

s+ 2
+

3

s− 3

}
= (4e−2t + 3e3t), t ≥ 0.

Example: Find the inverse Laplace transform of F (s) =
2s2 + 5

s2 + 3s+ 2
.

F (s) is an improper function with m = n. In such case we can express F (s) as a sum of the

coefficient bn (the coefficient of the highest power in the numerator) plus partial fractions

corresponding to the denumerator.

F (s) =
2s2 + 5

(s+ 1)(s+ 2)
= 2 +

k1

s+ 1
+

k2

s+ 2
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Inverse Laplace Transform
Partial fraction expansion cont.

where

k1 =
2s2 + 5

s+ 2

∣∣∣∣
s=−1

=
2 + 5

−1 + 2
= 7

and

k2 =
2s2 + 5

s+ 1

∣∣∣∣
s=−2

=
8 + 5

−2 + 1
= −13

Therefore F (s) = 2 +
7

s+ 1
−

13

s+ 2
. From the table, we obtain

f(t) = 2δ(t) + 7e−t − 13e−2t, t ≥ 0.
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Inverse Laplace Transform
Partial fraction expansion cont.

Example: Find the inverse Laplace transform of F (s) =
6(s+ 34)

s(s2 + 10s+ 34)

F (s) =
6(s+ 34)

s(s2 + 10s+ 34)
=

6(s+ 34)

s(s+ 5− j3)(s+ 5 + j3)

=
k1

s
+

k2

s+ 5− j3
+

k∗2
s+ 5 + j3

Note that the coefficients (k2 and k∗2) of the conjugate terms must also be conjugate. Now

k1 =
6(s+ 34)

s2 + 10s+ 34

∣∣∣∣
s=0

=
6× 34

34
= 6

k2 =
6(s+ 34)

s(s+ 5 + j3)

∣∣∣∣
s=−5+j3

=
29 + j3

−3− j5
= −3 + j4

k∗2 = −3− j4

To use the Laplace transform table, we need to express k2 and k∗2 in polar form

−3 + j4 =
√

32 + 42ej tan−1(4/−3) = 5ej tan−1(4/−3)
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Inverse Laplace Transform
Partial fraction expansion cont.

From the Figure below, we observe that

k2 = −3 + j4 = 5ej126.9
◦
and k∗2 = 5e−j126.9◦

Therefore

F (s) =
6

s
+

5ej126.9
◦

s+ 5− j3
+

5e−j126.9◦

s+ 5 + j3

From the table pair 10b

f(t) =
[
6 + 10e−5t cos(3t+ 126.9◦)

]
u(t)

−3 + j4
j4

−3

126.9◦

−53.1◦

3− j4

Lecture 5: Laplace Transform and Its Applications J 18/62 I }



Inverse Laplace Transform
Alternative Method Using Quadratic Factors

F (s) =
6(s+ 34)

s(s2 + 10s+ 34)
=

k1

s
+

As+B

s2 + 10s+ 34

We have already determined that k1 = 6 by the (Heaviside) “cover-up” method. Therefore

6(s+ 34)

s(s2 + 10s+ 34)
=

6

s
+

As+B

s2 + 10s+ 34

Clearing the fractions by multiplying both sides by s(s2 + 10s+ 34) yields

6(s+ 34) = 6(s2 + 10s+ 34) + s(As+B)

= (6 +A)s2 + (60 +B)s+ 204

Now, equating the coefficients of s2 and s on both sides yields

0 = (6 +A) =⇒ A = −6

6 = 60 +B =⇒ B = −54
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Inverse Laplace Transform
Alternative Method Using Quadratic Factors cont.

and

F (s) =
6

s
+

−6s− 54

s2 + 10s+ 34

Now from the table, the parameters for this inverse are A = −6, B = −54, a = 5, c = 34,

and b =
√
c− a2 = 3, and

r =

√
A2c+B2 − 2ABa

c− a2
= 10, θ = tan−1 Aa−B

A
√
c− a2

= 126.9◦

b =
√

c− a2

Therefore

f(t) =
[
6 + 10e−5t cos(3t+ 126.9◦)

]
u(t)

which agrees with the previous result.
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Inverse Laplace Transform
Alternative Method Using Short-Cuts

F (s) =
6(s+ 34)

s(s2 + 10s+ 34)
=

6

s
+

As+B

s2 + 10s+ 34

This step can be accomplished by multiplying both sides of the above equation by s and then

letting s → ∞. This procedure yields

0 = 6 +A =⇒ A = −6.

Therefore

6(s+ 34)

s(s2 + 10s+ 34)
=

6

s
+

−6s+B

s2 + 10s+ 34

To find B, we let s take on any convenient value, say s = 1, in this equation to obtain

210

45
= 6 +

B − 6

45
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Inverse Laplace Transform
Alternative Method Using Short-Cuts cont.

Multiplying both sides of this equation by 45 yields

210 = 270 +B − 6 =⇒ B = −54

a deduction which agrees with the results we found earlier.
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Inverse Laplace Transform
Partial fraction expansion: repeated roots

Example: Find the inverse Laplace transform of F (s) =
8s+ 10

(s+ 1)(s+ 2)3

F (s) =
8s+ 10

(s+ 1)(s+ 2)3
=

k1

s+ 1
+

a0

(s+ 2)3
+

a1

(s+ 2)2
+

a2

a+ 2

where

k1 =
8s+ 10

(s+ 2)3

∣∣∣∣
s=−1

= 2

a0 =
8s+ 10

(s+ 1)

∣∣∣∣
s=−2

= 6

a1 =

{
d

ds

[
8s+ 10

(s+ 1)

]}
s=−2

= −2

a2 =
1

2

{
d2

ds2

[
8s+ 10

(s+ 1)

]}
s=−2

= −2

Note : the general formula is

an =
1

n!

{
dn

dsn

[
(s − λ)

r
F (s)

]}
s=λ
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Inverse Laplace Transform
Partial fraction expansion: repeated roots

Therefore

F (s) =
2

s+ 1
+

6

(s+ 2)3
−

2

(s+ 2)2
−

2

s+ 2

and

f(t) =
[
2e−t + (3t2 − 2t− 2)e−2t

]
u(t)

Alternative Method: A Hybrid of Heaviside and Clearing Fractions: Using the values

k1 = 2 and a0 = 6 obtained earlier by the Heaviside “cover-up” method, we have

8s+ 10

(s+ 1)(s+ 2)3
=

2

s+ 1
+

6

(s+ 2)3
+

a1

(s+ 2)2
+

a2

s+ 2
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Inverse Laplace Transform
Partial fraction expansion: repeated roots

We now clear fractions by multiplying both sides of the equation by (s+ 1)(s+ 2)3. This

procedure yields

8s+ 10 = 2(s+ 2)3 + 6(s+ 1) + a1(s+ 1)(s+ 2) + a2(s+ 1)(s+ 2)2

= (2 + a2)s
3 + (12 + a1 + 5a2)s

2 + (30 + 3a1 + 8a2)s+ (22 + 2a1 + 4a2)

Equating coefficients of s3 and s2 on both sides, we obtain

0 = (2 + a2) =⇒ a2 = −2

0 = 12 + a1 + 5a2 = 2 + a1 =⇒ a1 = −2

Equating the coefficients of s1 and s0 serves as a check on our answers.

8 = 30 + 3a1 + 8a2

10 = 22 + 2a1 + 4a2

Substitution of a1 = a2 = −2, obtained earlier, satisfies these equations.
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Inverse Laplace Transform
Partial fraction expansion: repeated roots

Alternative Method: A Hybrid of Heaviside and Short-Cuts: Using the values k1 = 2 and

a0 = 6, determined earlier by the Heaviside method, we have

8s+ 10

(s+ 1)(s+ 2)3
=

2

s+ 1
+

6

(s+ 2)3
+

a1

(s+ 2)2
+

a2

s+ 2

There are two unknowns, a1 and a2. If we multiply both sides by s and then let s → ∞, we

eliminate a1. This procedure yields

0 = 2 + a2 =⇒ a2 = −2

Therefore

8s+ 10

(s+ 1)(s+ 2)3
=

2

s+ 1
+

6

(s+ 2)3
+

a1

(s+ 2)2
−

2

s+ 2

There is now only one unknown, a1. This value can be determined readily by equal to any

convenient value, say s = 0. This step yields

10

8
= 2 +

3

4
+

a1

4
− 1 =⇒ a1 = −2.
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The Laplace transform properties
Linearity

The Laplace transform is linear: if f(t) and g(t) are any signals, and a

is any scalar, we have

L{af(t)} = aF (s), L{(f(t) + g(t))} = F (s) +G(s)

i.e., homogeneity and superposition hold.

Example:

L
{
3δ(t)− 2et

}
= 3L{δ(t)} − 2L

{
et
}

= 3− 2

s− 1

=
3s− 5

s− 1
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The Laplace transform properties
One-to-one property

The Laplace transform is one-to-one: if L{f(t)} = L{g(t)} then

f(t) = g(t).

� F (s) determines f(t)

� inverse Laplace transform L−1 {f(t)} is well defined.

Example:

L−1

{
3s− 5

s− 1

}
= 3δ(t)− 2et

in other words, the only function f(t) such that

F (s) =
3s− 5

s− 1

is f(t) = 3δ(t)− 2et.
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The Laplace transform properties
Time delay

This property states that if

f(t) ⇐⇒ F (s)

then for T ≥ 0

f(t− T ) ⇐⇒ e−sTF (s)

(If g(t) is f(t), delayed by T seconds), then we have G(s) = e−sTF (s).

Derivation:

G(s) =

∫ ∞

0
e−stg(t)dt =

∫ ∞

0
e−stf(t− T )dt

=

∫ ∞

0
e−s(τ+T )f(τ)dτ = e−sTF (s)
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The Laplace transform properties
Time delay

To avoid a pitfall, we should restate the property as follow:

f(t)u(t) ⇐⇒ F (s)

then

f(t− T )u(t− T ) ⇐⇒ e−sTF (s), T ≥ 0.
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The Laplace transform properties
Time delay example

f(t)

0

1

1 2 3 4

Find the Laplace Transform of f(t) depicted in Figure above.

The signal can be described as

f(t) = (t− 1)[u(t− 1)− u(t− 2)] + [u(t− 2)− u(t− 4)]

= (t− 1)u(t− 1)− (t− 1)u(t− 2) + u(t− 2)− u(t− 4)

= (t− 1)u(t− 1)− (t− 2)u(t− 2)− u(t− 4)
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The Laplace transform properties
Time delay example

Since t ⇐⇒
1

s2
yields

(t− 1)u(t− 1) ⇐⇒
1

s2
e−s and (t− 2)u(t− 2) ⇐⇒

1

s2
e−2s

Also u(t) ⇐⇒
1

s
yields

u(t− 4) ⇐⇒
1

s
e−4s

Therefore

F (s) =
1

s2
e−s −

1

s2
e−2s −

1

s
e−4s
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The Laplace transform properties
Time delay example

Find the inverse Laplace transform of

F (s) =
s+ 3 + 5e−2s

(s+ 1)(s+ 2)

The F (s) can be separated in two parts

F (s) =
s+ 3

(s+ 1)(s+ 2)︸ ︷︷ ︸
F1(s)

+
5e−2s

(s+ 1)(s+ 2)︸ ︷︷ ︸
F2(s)e−2s

where

F1(s) =
s+ 3

(s+ 1)(s+ 2)
=

2

s+ 1
−

1

s+ 2

F2(s) =
5

(s+ 1)(s+ 2)
=

5

s+ 1
−

5

s+ 2
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The Laplace transform properties
Time delay example

Therefore

f1(t) =
(
2e−t − e−2t

)
f2(t) = 5

(
e−t − e−2t

)
Since

F (s) = F1(s) + F2(s)e
−2s

f(t) = f1(t) + f2(t− 2)

=
(
2e−t − e−2t

)
u(t) + 5

[
e−(t−2) − e−2(t−2)

]
u(t− 2)
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The Laplace transform properties
Time scaling

Define a signal g(t) by g(t) = f(at), where a > 0; then

G(s) =
1

a
F (

s

a
).

time are scaled by a, then frequencies are scaled by 1/a.

G(s) =

∫ ∞

0
f(at)e−stdt =

1

a

∫ ∞

0
f(τ)e−

s
a
τdτ =

1

a
F (

s

a
),

where τ = at.

Example: L
{
et
}
=

1

s− 1
so

L
{
eat

}
=

1

a

1
s
a − 1

=
1

s− a
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The Laplace transform properties
Exponential scaling

Let f(t) be a signal and a a scale, and define g(t) = eatf(t); then

G(s) = F (s− a)

Proof:

G(s) =

∫ ∞

0
e−steatf(t)dt =

∫ ∞

0
e−(s−a)tf(t)dt = F (s− a)

Example: L{cos t} =
s

s2 + 1
, and hence

L
{
e−t cos t

}
=

s+ 1

(s+ 1)2 + 1
=

s+ 1

s2 + 2s+ 2
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The Laplace transform properties
Exponential scaling

Example: Consider F (s) =
−6s− 54

s2 + 10s+ 34
. By using the exponential

exponential scaling, we obtain

−6s− 54

s2 + 10s+ 34
=

−6(s+ 5)− 24

(s+ 5)2 + 9
=

−6(s+ 5)

(s+ 5)2 + 32
+

−8(3)

(s+ 5)2 + 32

Then,

f(t) = −6e−5t cos 3t− 8e−5t sin 3t

= 10e−5t cos(3t+ 127◦)

You can do this inverse Laplace transform using only standard Laplace

transform table.
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The Laplace transform properties
Derivative

If signal f(t) is continuous at t = 0, then

L
{
df

dt

}
= sF (s)− f(0);

� time-domain differentiation becomes multiplication by frequency

variable s (as with phasors)

� plus a term that includes initial condition (i.e., −f(0))

higher-order derivatives: applying derivative formula twice yields

L
{
d2f(t)

dt2

}
= sL

{
df(t)

dt

}
− df(t)

dt

= s(sF (s)− f(0))− df(0)

dt
= s2F (s)− sf(0)− df(0)

dt

similar formulas hold for L
{
f (k)

}
.
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The Laplace transform properties
Derivation of derivative formula

Start from the defining integral

G(s) =

∫ ∞

0

df(t)

dt
e−stdt

integration by parts yields

G(s) = e−stf(t)
∣∣∣∞
0

−
∫ ∞

0
f(t)(−se−st)dt

= f(t)e−s∞ − f(0) + sF (s)

we recover the formula

G(s) = sF (s)− f(0)
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The Laplace transform properties
Derivative example

1. f(t) = et, so f ′(t) = et and

L{f(t)} = L
{
f ′(t)

}
=

1

s− 1

by using L{f ′(t)} = s
1

s− 1
− 1, which is the same.

2. sinωt = − 1
ω

d
dt

cosωt, so

L{sinωt} = −
1

ω

(
s

s

s2 + ω2
− 1

)
=

ω

s2 + ω2

3. f(t) is a unit ramp, so f ′(t) is a unit step

L
{
f ′(t)

}
= s

(
1

s2

)
− 0 =

1

s
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The Laplace transform properties
Integral

Let g(t) be the running integral of a signal f(t), i.e.,

g(t) =

∫ t

0
f(τ)dτ

then G(s) =
1

s
F (s), i.e., time-domain integral become division by

frequency variable s.

Example: f(t) = δ(t) is a unit impulse function, so F (s) = 1; g(t) is
the unit step

G(s) =
1

s
.

Example: f(t) is a unit step function, so F (s) = 1/s; g(t) is the unit
ramp function (g(t) = t for t ≥ 0),

G(s) =
1

s2
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The Laplace transform properties
Derivation of integral formula:

G(s) =

∫ ∞

t=0

(∫ t

τ=0
f(τ)dτ

)
e−stdt

here we integrate horizontally first over the triangle 0 ≤ τ ≤ t.

t

τ

Let’s switch the order, integrate vertically

first:

G(s) =

∫ ∞

τ=0

∫ ∞

t=τ
f(τ)e−stdtdτ

=

∫ ∞

τ=0
f(τ)

(∫ ∞

t=τ
e−stdt

)
dτ

=

∫ ∞

τ=0
f(τ)

1

s
e−sτdτ =

F (s)

s
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The Laplace transform properties
Convolution

The convolution of signals f(t) and g(t), denoted h(t) = f(t) ∗ g(t), is
the signal

h(t) =

∫ t

0
f(τ)g(t− τ)dτ

In terms of Laplace transforms:

H(s) = F (s)G(s)

The Laplace transform turns convolution into multiplication.
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The Laplace transform properties
Convolution cont.

Let’s show that L{f(t) ∗ g(t)} = F (s)G(s) :

H(s) =

∫ ∞

t=0
e−st

(∫ t

τ=0
f(τ)g(t− τ)dτ

)
dt

=

∫ ∞

t=0

∫ t

τ=0
e−stf(τ)g(t− τ)dτdt

where we integrate over the triangle 0 ≤ τ ≤ t. By changing the order

of the integration and changing the limits of integration yield

H(s) =

∫ ∞

τ=0

∫ ∞

t=τ
e−stf(τ)g(t− τ)dtdτ
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The Laplace transform properties
Convolution cont.

Change variable t to t̄ = t− τ ; dt̄ = dt; region of integration becomes

τ ≥ 0, t̄ ≥ 0

H(s) =

∫ ∞

τ=0

∫ ∞

t̄=0
e−s(t̄+τ)f(τ)g(t̄)dt̄dτ

=

(∫ ∞

τ=0
e−sτf(τ)dτ

)(∫ ∞

t̄=0
e−st̄g(t̄)dt̄

)
= F (s)G(s)
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The Laplace transform properties
Convolution cont.

Example: Using the time convolution property of the Laplace transform, determine

c(t) = eatu(t) ∗ ebtu(t). From the convolution property, we have

C(s) =
1

s− a

1

s− b
=

1

a− b

[
1

s− a
−

1

s− b

]
The inverse transform of the above equation yields

c(t) =
1

a− b
(eat − ebt), t ≥ 0.
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Applications
Solution of Differential and Integro-Differential Eqautions

Solve the second-order linear differential equation

(D2 + 5D + 6)y(t) = (D + 1)f(t)

if the initial conditions are y(0−) = 2, ẏ(0−) = 1, and the input f(t) = e−4tu(t).

The equation is

d2y

dt2
+ 5

dy

dt
+ 6y(t) =

df

dt
+ f(t).

Let

y(t) ⇐⇒ Y (s).

Then

dy

dt
⇐⇒ sY (s)− y(0−) = sY (s)− 2.
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Applications
Solution of Differential and Integro-Differential Eqautions

and

d2y

dt2
⇐⇒ s2Y (s)− sy(0−)− ẏ(0−) = s2Y (s)− 2s− 1.

Moreover, for f(t) = e−4tu(t),

F (s) =
1

s+ 4
, and

df

dt
⇐⇒ sF (s)− f(0−) =

s

s+ 4
− 0 =

s

s+ 4
.

Taking the Laplace transform, we obtain

[
s2Y (s)− 2s− 1

]
+ 5 [sY (s)− 2] + 6Y (s) =

s

s+ 4
+

1

s+ 4

Collecting all the terms of Y (s) and the remaining terms separately on the left-hand side, we

obtain

(s2 + 5s+ 6)Y (s)− (2s+ 11) =
s+ 1

s+ 4
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Applications
Solution of Differential and Integro-Differential Equations

Therefore

(s2 + 5s+ 6)Y (s) = (2s+ 11) +
s+ 1

s+ 4
=

2s2 + 20s+ 45

s+ 4

and

Y (s) =
2s2 + 20s+ 45

(s2 + 5s+ 6)(s+ 4)

=
2s2 + 20s+ 45

(s+ 2)(s+ 3)(s+ 4)

Expanding the right-hand side into partial fractions yields

Y (s) =
13/2

s+ 2
−

3

s+ 3
−

3/2

s+ 4

The inverse Laplace transform of the above equation yields

y(t) =

(
13

2
e−2t − 3e−3t −

3

2
e−4t

)
u(t).
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Applications
Zero-Input and Zero-State Components of Response

� The Laplace transform method gives the total response, which

includes zero-input and zero-state components.

� The initial condition terms in the response give rise to the

zero-input response.

For example in the previous example,

(s2 + 5s+ 6)Y (s)− (2s+ 11) =
s+ 1

s+ 4
so that

(s2 + 5s+ 6)Y (s) = (2s+ 11)︸ ︷︷ ︸
initial condition terms

+
s+ 1

s+ 4︸ ︷︷ ︸
input terms
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Applications
Zero-Input and Zero-State Components of Response

Therefore

Y (s) =
2s+ 11

s2 + 5s+ 6︸ ︷︷ ︸
zero-input component

+
s+ 1

(s+ 4)(s2 + 5s+ 6)︸ ︷︷ ︸
zero-state component

=

[
7

s+ 2
− 5

s+ 3

]
+

[
−1/2

s+ 2
+

2

s+ 3
− 3/2

s+ 4

]
Taking the inverse transform of this equation yields

y(t) = (7e−2t − 5e−3t)u(t)︸ ︷︷ ︸
zero-input response

+(−1

2
e−2t + 2e−3t − 3

2
e−4t)u(t)︸ ︷︷ ︸

zero-state response
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Analysis of Electrical Networks
Basic concept

� It is possible to analyze electrical networks directly without having

to write the integro-differential equation.

� This procedure is considerably simpler because it permits us to

treat an electrical network as if it was a resistive network.

� To do such a procedure, we need to represent a network in

“frequency domain” where all the voltages and currents are

represented by their Laplace transforms.
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Analysis of Electrical Networks
Basic concept

zero initial conditions case:

If v(t) and i(t) are the voltage across and the current through an

inductor of L henries, then

v(t) = L
di(t)

dt
⇐⇒ V (s) = sLI(s), i(0) = 0.

Similarly, for a capacitor of C farads, the voltage-current relationship is

i(t) = C
dv(t)

dt
⇐⇒ V (s) =

1

Cs
I(s), v(0) = 0.

For a resistor of R ohms, the voltage-current relationship is

v(t) = Ri(t) ⇐⇒ V (s) = RI(s).
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Analysis of Electrical Networks
Basic concept

� Thus, in the “frequency domain,” the voltage-current relationships

of an inductor and a capacitor are algebraic;

� These elements behave like resistors of “resistance” Ls and 1/Cs,

respectively.

� The generalized “resistance” of an element is called its impedance

and is given by the ratio V (s)/I(s) for the element (under zero

initial conditions).

� The impedances of a resistor of R ohms, and inductor of L henries,

and a capacitance of C farads are R, Ls, and 1/Cs, respectively.

� The Kirchhoff’s laws remain valid for voltages and currents in the

frequency domain.
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Analysis of Electrical Networks
A simple RC circuit

Find the loop current i(t) in the circuit, if all the initial conditions are zero.

−

+
10u(t)

1 H 3 Ω

1

2
Fi(t)

−

+10

s

s 3

2

s
I(s)

In the first step, we represent the circuit in the frequency domain shown in the right hand
side. The impedance in the loop is

Z(s) = s+ 3 +
2

s
=

s2 + 3s+ 2

s

The input voltage is V (s) = 10/s. Therefore, the loop current I(s) is

I(s) =
V (s)

Z(s)
=

10/s

(s2 + 3s+ 2)/s
=

10

s2 + 3s+ 2
=

10

(s+ 1)(s+ 2)
=

10

s+ 1
−

10

s+ 2

The inverse transform of the equation yields: i(t) = 10(e−t − e−2t)u(t).
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Analysis of Electrical Networks
Initial Condition Generators

A capacitor C with an initial voltage v(0) can be represented in the
frequency domain by an uncharged capacitor of impedance 1/Cs in
series with a voltage source of value v(0)/s or as the same uncharged
capacitor in parallel with a current source of value Cv(0).

i(t)

C
+
v(0)

−

−

v(t)

+

(a)

I(s)

1

Cs

−

+ v(0)

s

−

V (s)

+

(b)

I(s)

1

Cs
Cv(0)

−

V (s)

+

(c)

i(t) = C
dv

dt
⇐⇒ I(s) = C[sV (s)− v(0)]

Rearranging the equation, we obtain

V (s) =
1

Cs
I(s) +

v(0)

s
or V (s) =

1

Cs
[I(s) + Cv(0)]
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Analysis of Electrical Networks
Initial Condition Generators

An inductor L with an initial voltage i(0) can be represented in the
frequency domain by an inductor of impedance Ls in series with a
voltage source of value Li(0) or by the same inductor in parallel with a
current source of value i(0)/s.

i(t)

L

−

v(t)

+

(a)

I(s)

Ls

−

+
Li(0)

−

V (s)

+

(b)

I(s)

Ls
i(0)

s

−

V (s)

+

(c)

v(t) = L
di

dt
⇐⇒ V (s) = L[sI(s)− i(0)]

Rearranging the equation, we obtain

V (s) = sLI(s)− Li(0) or V (s) = Ls

[
I(s)− i(0)

s

]
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Analysis of Electrical Networks
A simple RLC circuit with initial condition generators

Find the loop current i(t) in the circuit, if y(0) = 2 and vC(0) = 10.

−

+
10u(t)

y(0−) = 2

1 H 2 Ω

1

5
F

+
10 V

−

y(t)
−

+10

s

s
− +

2
2

5

s

−

+ 10

s

Y (s)

The right hand side figure shows the frequency-domain representation of the circuit.

Applying mesh analysis we have

−
10

s
+ sY (s)− 2 + 2Y (s) +

5

s
Y (s) +

10

s
= 0

Y (s) =
2

s+ 2 + 5
s

=
2s

s2 + 2s+ 5
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Analysis of Electrical Networks
A simple RLC circuit with initial condition generators

Y (s) =
2s

s2 + 2s+ 5
=

2(s+ 1)

(s+ 1)2 + 22
−

2

(s+ 1)2 + 22)

Therefore

y(t) = e−t(2 cos 2t− sin 2t) = e−t(C cos θ cos 2t− C sin θ sin 2t),

since

C =
√

22 + 1 =
√
5, θ = tan−1 2

4
= 26.6◦

then

y(t) =
√
5e−t cos(2t+ 26.6◦)u(t).
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Analysis of Electrical Networks
An RLC circuit with initial condition generators

The switch in the circuit is in the closed position for a long time before t = 0, when it is

opened instantaneously. Find the currents y1(t) and y2(t) for t ≥ 0.

20 V

y1(t)

1 F

+
vC− 1 Ω

1

2
H

4 V

t = 0

1

5
Ω y2(t) −

+20

s

−+

16

s
1

s 1

s

2

−
+

2

Y1(s)
1

5
Y2(s)

When the switch is closed and the steady-state conditions are reached, the capacitor voltage

vC = 16 volts, and the inductor current y2 = 4 A. The right hand side circuit shows the

transformed version of the circuit in the left hand side. Using mesh analysis, we obtain

Y1(s)

s
+

1

5
[Y1(s)− Y2(s)] =

4

s

−
1

5
Y1(s) +

6

5
Y2(s) +

s

2
Y2(s) = 2
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Analysis of Electrical Networks
An RLC circuit with initial condition generators

Rewriting in matrix form, we have[
1
s
+ 1

5
− 1

5

− 1
5

6
5
+ s

2

][
Y1(s)

Y2(s)

]
=

[
4
s

2

]

Therefore,

Y1(s) =
24(s+ 2)

s2 + 7s+ 12

=
24(s+ 2)

(s+ 3)(s+ 4)
=

−24

s+ 3
+

48

s+ 4

Y2(s) =
4(s+ 7)

s2 + 7s+ 12
=

16

s+ 3
−

12

s+ 4
.

Finally,

y1(t) = (−24e−3t + 48e−4t)u(t)

y2(t) = (16e−3t − 12e−4t)u(t)
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