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The Laplace Transform convert integral and differential equations into

algebraic equations.

It can applies to
e general signal, not just sinusoids
¢ handles transient conditions

It can be used to analyze

e Linear Constant Coefficient Ordinary Differential Equation
(LCCODE) or LTI system

e complicated RLC circuits with sources

e complicated systems with integrators, differentiators, gains
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The Unilateral Laplace transform

We will be interested in signals defined for ¢t > 0.

Definition
Let f(t),t > 0, be a given signal (function). The Unilateral Laplace

transform of a signal (function) f(¢) is defined by

F(s) = L{f(t)} = /0 " ft)ett,

for those s € C for which the integral exists.

e F'is a complex-values function of complex numbers
o s is called the (complex) frequency variable, with units sec™!; ¢ is
called the time variable (in sec); st is unitless.

e For convenience, we will call the unilateral laplace transform as the

laplace transform.
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The Laplace transform

Example

Exponential function: f(t) = e

F(s) = /oo etestdt — /00 e(1=8)t gy — Le(l—s)t _
0 0

provide we can say e(1=%)t 5 0 as t — 0o, which is true for Res > 1:

|e(1fs)t| _ |efj(Ims)t| ‘e(lfRes)t‘ — e(lfRes)t

=1

e the integral defining F'(s) exists for all s € C with Res > 1. This

condition is called region of convergence (ROC) of F(s).

o however the resulting formula for F'(s) makes sense for all s € C

excepts s = 1.
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The Laplace transform

Example cont.

Constant or unit step function: f(t) = u(t) (for t > 0)

& 1 <1
F(s) = / e Stdt = ——e7% = -
0 S 0 S

provided we can say e %! — 0 as t — oo, which is true for Re s > 0 since

|e—st| _ |€—j(lms)t||e—(Res)t| _ e—(Res)t

e the integral defining F'(s) makes sense for all s with Res > 0.

o however the resulting formula for F'(s) makes sense for all s except
s =0.
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The Laplace transform

Example cont.

Sinusoid : first express f(t) = coswt as

1 . 1 .
) = = Jwt = —jwt
f(t) 56"+ 5e

now we can find F as

0 1., 1
F(s) = / e st <—ejwt + —e‘wt> dt
A 2 2
_1 / ¥ st gy L / (st gy
0 2 0

2

11 1 1
_Es—jw+§s+jw
s

i

(valid for Re s > 0; final formula for s # +jw)
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The Laplace transform

Example cont.

Powers of t: f(t)=1t", (n>1)

> n _—st n —e
F(s) = t"eSdt =t
0 S

n n—1
=—L(t
SL(m )

provided t"e~%! — 0 if t — oo, which is true for Re s > 0. Applying the

formular recursively, we obtain

n!

F(S)ZW

valid for Re s > 0; final formula exists for all s # 0.
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The Laplace transform

Impulses at t = 0

If f(t) contains impulses at t = 0 we choose to include them in the

integral defining F'(s):

F(s) = / T e tat

example: impulse function, f(t) = 6(¢)

F(s) = S(t)e Stdt = e
0—

*St‘tzo = 1 sampling property

Similarly for f(t) = 6% (t) we have

— > (k) —st g (_ @ —st
F(s) 0_5 (t)e *'dt = (—1) prls
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The Laplace transform

Multiplication by ¢
Let f(t) be a signal and define

g(t) =tf(t) then we have G(s)=——F(s)
To verify formula, just differentiate both sides of
Fls) = / et (1) dt
0

with respect to s to get

d > —st — = _ e st
d_SF(S):/O (—t)e f(t)dt—/0 (=t)f(t)e >"dt

=— /Ooo tf(t)e *tdt = —G(s)
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The Laplace transform

Multiplication by ¢t examples

Examples:
o f(t)=e", g(t) =te!

d 1 1
-ty ¢ _
Lite} = dss+1 (s+1)2

o f(t) =te™!, gt) =t

d 1 2
2ot = =
Lite™) ds(s+1)2  (s+1)3
e in general
k!
E—xt| _
E{te }_(54—)\)’““
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The Laplace transform

Inverse Laplace transform

In principle we can recover f(t) from F(s) via

f(t) ! /UHOO F(s)ef'ds

B 27T.] —joo

where o is large enough that F'(s) is defined for Res > o.

In practical, no one uses this formulal.

Lecture 5: Laplace Transform and Its Applications <12/62 » ©



Inverse Laplace Transform

Finding the inverse Laplace transform by using the standard formula
1 o+joo o
) =5 /0 et
is difficult and tedious.
e We can find the inverse transforms from the transform table.

o All we need is to express F'(s) as a sum of simpler functions of the

forms listed in the Laplace transform table.

e Most of the transforms F'(s) of practical interest are rational

functions: that is ratios of polynomials in s.

e Such functions can be expressed as a sum of simpler functions by

using partial fraction expansion.
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Inverse Laplace Transform

Partial fraction expansion

7s—6
Example: Find the inverse Laplace transform of 2876
s2 —s—

F(S)_ 7s —6 _ kl + k:g
T (s+2)(s—3) s+2 s-—3

Using a “cover up” method:

7s —6 —14 -6
by = 22 R
$—3 | p -2-3
7s—6 21 -6
kg = 22 = =3
s+2 |3 342
Therefore
s — 4 3
Fsy=—2"8

(s+2)(s—3) s+2+5—3
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Inverse Laplace Transform

Partial fraction expansion cont.

Using the table of Laplace transforms, we obtain

i 4 3
@ =r {s+2+s—3}

= (4e™ 2 4 3e3), t>0.

252 4+ 5

s2+3s+2°
F(s) is an improper function with m = n. In such case we can express F'(s) as a sum of the

Example: Find the inverse Laplace transform of F(s) =

coefficient by, (the coefficient of the highest power in the numerator) plus partial fractions
corresponding to the denumerator.
252 +5 k1 ko

=2
GG+ " Tsr1Ts+2

F(s) =
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Inverse Laplace Transform

Partial fraction expansion cont.

where
252 +5 2+5
= 25T - 2ts g
S+2 |y -—1+2
and
252 +5 8+5
k:2 = s+ = + = —13
S+1 |om o —2+1
7 .
Therefore F(s) =24+ —— — . From the table, we obtain
s+1 s+4+2

Ft) =25(t) + 7e7t — 13672, t>0.
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Inverse Laplace Transform

Partial fraction expansion cont.

6(s + 34)

Example: Find the inverse Laplace transform of F(s) = ———————
P P ) s(s2 + 10s + 34)

F(s) = 6(s+34) 6(s + 34)
T s(s24+10s+34)  s(s+5—33)(s+54+33)
k1 ko k3

=—+ +
s  s+5—33 s+5+33
Note that the coefficients (k2 and k3) of the conjugate terms must also be conjugate. Now

6(s + 34) _ 6x34

k1 = = 6
s2+10s+34|,_, 34

by O30 R R
s(s+5+73) ls=_5443 —3—35

k= —3— j4

To use the Laplace transform table, we need to express k2 and k3 in polar form

34 j4 = /32 § 42¢7 tan H(4/=3) _ peitan1(4/-3)
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Inverse Laplace Transform

Partial fraction expansion cont.
From the Figure below, we observe that
ka = =3+ j4 = 5¢7126:9° and kj = 5e~9126:9°
Therefore

6 5¢3126.9° 5e—1126.9°
F(s)=—+ =+ ‘
s s+5—33 s+5+43

From the table pair 10b
f&)=1[6+ 10e %% cos(3t + 126.9°)] u(t)

,,,,, j4

126.9°

-3 \) —53.1°

Y34
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Inverse Laplace Transform

Alternative Method Using Quadratic Factors

6(s + 34) k1 As+ B

F =~ @ = - -
)= ST+ 10s+30) 5 T 521105734

We have already determined that k1 = 6 by the (Heaviside) “cover-up” method. Therefore

6(s + 34) 6 As+ B

s(s2 + 10s + 34) T s s2110s+34

Clearing the fractions by multiplying both sides by s(s? + 10s + 34) yields

6(s + 34) = 6(s? + 10s + 34) + s(As + B)
= (6 + A)s? + (60 + B)s 4 204

Now, equating the coefficients of s2 and s on both sides yields

0=(6+A) — A=—6
6=60+B —> B=—54
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Inverse Laplace Transform

Alternative Method Using Quadratic Factors cont.

6  —6s—54
F(s)= 2 4 25 79°%
&)=+ Z 05131

Now from the table, the parameters for this inverse are A = —6,B = —54,a = 5,¢ = 34,

and b =+v/c—a? = 3, and

A2%2¢+ B?2 — 2ABa 0 0 — tan—1 Aa— B 126.9°
r=4/ ———— =10, =tan t ———— = 126.
c—a? AvVec —a?

b=+Vc—a?

Therefore
f&) =16+ 10e5¢ cos(3t + 126.9°)] u(t)

which agrees with the previous result.
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Inverse Laplace Transform

Alternative Method Using Short-Cuts

6(s + 34) 6 As+B
F =~ @ = - -
)= S +10s+31) s  Zii0s13d

This step can be accomplished by multiplying both sides of the above equation by s and then
letting s — oo. This procedure yields

0=6+A = A=—6.

Therefore

6(s + 34) 6 —6s+ B

s(s2 + 10s + 34) T s s21+10s+34
To find B, we let s take on any convenient value, say s = 1, in this equation to obtain

210 . B-6
45 45
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Inverse Laplace Transform

Alternative Method Using Short-Cuts cont.

Multiplying both sides of this equation by 45 yields
210=270+B—-6 — B=-54

a deduction which agrees with the results we found earlier.
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Inverse Laplace Transform

Partial fraction expansion: repeated roots

8s+ 10

Example: Find the inverse Laplace transform of F(s) = m
s s

8s+ 10 k1 ag 5} a2
F = =
O = G 6127 s+1 G+ T 122 Tate
where

Ky = 8s + 10 9
(S + 2)3 s=—1
8s+ 10

ag = =
(s+1) ;o

SE |

i

an i{ d [(s—wnsﬂ}

a2 =

N | =

Note : the general formula is

! n
n! | ds s=x
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Inverse Laplace Transform

Partial fraction expansion: repeated roots

Therefore

2 n 6 _ 2 _ 2
s+1 (s+2)3 (s+2)2 s+2

F(s) =
and
f(t) = [2e7" + (3% — 2t — 2)e™ 2] u(t)

Alternative Method: A Hybrid of Heaviside and Clearing Fractions: Using the values

k1 = 2 and ap = 6 obtained earlier by the Heaviside “cover-up” method, we have

8s + 10 2 6 ai az

GADG+27 s+l (127 42 Tst2
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Inverse Laplace Transform

Partial fraction expansion: repeated roots

We now clear fractions by multiplying both sides of the equation by (s + 1)(s 4 2)3. This

procedure yields

85+10=2(s+2)2+6(s+1) +ai(s+1)(s+ 2) +az(s + 1)(s + 2)?
= (24 a2)s® + (12 + a1 + 5a2)s? + (30 + 3a1 + 8az2)s + (22 + 2a; + 4az)

Equating coefficients of s3 and s2 on both sides, we obtain

0=(2+a2) = azx=-2

0=124a1+b5a3=2+a1 — a1 = —2
Equating the coefficients of s and s serves as a check on our answers.

8 =30 + 3a;1 + 8a2
10 = 22 4 2a1 + 4a2

Substitution of a; = a2 = —2, obtained earlier, satisfies these equations.
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Inverse Laplace Transform

Partial fraction expansion: repeated roots

Alternative Method: A Hybrid of Heaviside and Short-Cuts: Using the values k1 = 2 and
ap = 6, determined earlier by the Heaviside method, we have

8s + 10 2 6 al as

GADG+27 s+l (127 422 Tst2

There are two unknowns, a; and az. If we multiply both sides by s and then let s — co, we
eliminate a1. This procedure yields

0=24a3 = ag = —2

Therefore

8s+ 10 2 6 ai 2

(s+1)(s+2)3 T s+1 + (s +2)3 + (s +2)2 T 542

There is now only one unknown, a1. This value can be determined readily by equal to any
convenient value, say s = 0. This step yields
10 3

2424+ = 2
- 24 = a1 = —2.
8 4" 4 !

Lecture 5: Laplace Transform and Its Applications <26/62 » ©



The Laplace transform properties

Linearity

The Laplace transform is linear: if f(t) and g(t) are any signals, and a

is any scalar, we have

LAaf(t)} = aF(s), LAf®) +9(t)} = F(s) +G(s)

i.e., homogeneity and superposition hold.
Example:

L{36(t) —2e'} =3L{6(t)} — 2L {e"}
2
s—1
_3s—5
s —1
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The Laplace transform properties

One-to-one property
The Laplace transform is one-to-one: if L{f(t)} = L{g(t)} then
ft) =g(@®).
e F(s) determines f(t)

o inverse Laplace transform £71 {f(t)} is well defined.

o {358—_15} = 35(t) — 2¢!

in other words, the only function f(¢) such that

Example:

3s—5H
F =
(s)=—~—7

is f(t) =306(t) — 2¢t.
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The Laplace transform properties

Time delay
This property states that if
f(t) = F(s)
then for T'> 0
ft=T) <= e *TF(s)

(If g(t) is f(t), delayed by T' seconds), then we have G(s) = e 5T F(s).
Derivation:

G(s) = /OOO e Stg(t)dt = /00 e SUf(t —T)dt

0

- /OO e~ f(1Ydr = e T F(s)

0
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The Laplace transform properties

Time delay

To avoid a pitfall, we should restate the property as follow:
ft)u(t) <= F(s)
then

ft —T)u(t —T) <= e *TF(s), T > 0.
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The Laplace transform properties

Time delay example

Y

Find the Laplace Transform of f(¢) depicted in Figure above.

The signal can be described as

f@) = (- Du(t—1) —u —2)] + [ult — 2) —u(t —4)]
(t — Du(t —1) — (t — Dt — 2) +ult — 2) — u(t — 4)
(t — Du(t — 1) — (t — 2)u(t — 2) — u(t — 4)
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The Laplace transform properties

Time delay example

1
Since t <— = yields
s

1 1
(t—Du(t—1) <= e °and (t —2u(t — 2) < —26_25
s s

1
Also u(t) <= — yields
s

1
u(t —4) <= —e~
S
Therefore
1 1
F(S) — ?8_3 _ 76_23 _ *6_48
S
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The Laplace transform properties

Time delay example

Find the inverse Laplace transform of

5434 5e2s

PO =6+

The F(s) can be separated in two parts

s+ 3 5e—2s
F(s) = +
)= D612 T GrDe 1)
Fi(s) Fa(s)e—2s
where
s+ 3 2 1
F = = _
1(s) (s+D(s+2) s+1 s+2
5 5 5
F2(5) = =

(s+1)(s+2) s+1 s+2
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The Laplace transform properties

Time delay example

Therefore

fit) = (27 - 6727:)
fo(t) =5 (eit — 672t)

Since

F(s) = Fi(s) + Fa(s)e™2®
f@) = fu(t) + f2(t — 2)
= (27" = e_2t) u(t) +5 [e_(t_z) — e_z(t_2)] u(t —2)
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The Laplace transform properties

Time scaling

Define a signal g(t) by g(t) = f(at), where a > 0; then

Gls)= - F ().

time are scaled by a, then frequencies are scaled by 1/a.

G(s) Z/O flat)e™dt = %/0 f(r)e aTdr = éF(g),

where 7 = at.

Example: £ {c'} = !

s—1

SO

Ll =gt =1

51 s—a
a
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The Laplace transform properties

Exponential scaling

Let f(t) be a signal and a a scale, and define g(t) = e f(t); then

G(s)=F(s—a)

G(s) = /0 T emsteat f(t)dt = / o f(t)dt = F(s — a)

0

Example: £ {cost} = % and hence
s

s+1 B s+1
s+1)2+1  s2+425+2

L {e_t cos t} = (
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The Laplace transform properties

Exponential scaling

—6s — 54 . :
Example: Consider F(s) = m By using the exponential
exponential scaling, we obtain
—6s — 54 —6(s+5)—24  —6(s+5) —8(3)

21 10s+38 (545219 (545243 (5452432

Then,

f(t) = —6e=> cos 3t — 8e ' sin 3t
= 10e" cos(3t 4 127°)

You can do this inverse Laplace transform using only standard Laplace

transform table.
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The Laplace transform properties

Derivative

If signal f(¢) is continuous at ¢ = 0, then

c{9} =) - 0

e time-domain differentiation becomes multiplication by frequency
variable s (as with phasors)
¢ plus a term that includes initial condition (i.e., —f(0))

higher-order derivatives: applying derivative formula twice yields

cBHO) - (H0) I

= s(s(5) — 10) ~ T = 2F(s) — 57(0) -

similar formulas hold for £ { f*)}.
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The Laplace transform properties

Derivation of derivative formula

Start from the defining integral

_ > df(t) —st
G(S) —/O 76 dt

integration by parts yields

Gls) = e (1) / F(t)(—se= ")t
= f(t)e_m — f(0) + sF(s)
we recover the formula

G(s) = sF(s) - f(0)
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The Laplace transform properties

Derivative example

1. f(t) =€, so f/(t) = et and

1
LUmy =L {0} =
by using L{f'(t)} = s 1~ 1, which is the same.
s —
2. sinwt = —%% coswt, so
. 1 s w
comat) == (v 1) - 7

3. f(t) is a unit ramp, so f’(t) is a unit step

z:{f/(t)}:s(siz) —o=1
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The Laplace transform properties

Integral

Let g(t) be the running integral of a signal f(t), i.e.,
t
ot) = [ fryar

1

then G(s) = —F(s), i.e., time-domain integral become division by
s

frequency variable s.

Example: f(t) = 0(¢) is a unit impulse function, so F(s) =1; g(t) is
the unit step

Example: f(t) is a unit step function, so F(s) = 1/s; g(t) is the unit
ramp function (g(t) =t for t > 0),
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The Laplace transform properties

Derivation of integral formula:

Gls) = /:; < /T t_o f(T)dT> et

here we integrate horizontally first over the triangle 0 < 7 < ¢.

Lecture 5: Laplace Transform and Its Applications

Let's switch the order, integrate vertically

first:

:/ f(r)e stdtdr
T= 0 t=1

- [ 1o ( /: estdt) ir

/ fom Lesrgr _ F)
8

S
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The Laplace transform properties

Convolution

The convolution of signals f(t) and g(t), denoted h(t) = f(t) x g(t), is

the signal
/ f(r)g(t —71)d

In terms of Laplace transforms:

The Laplace transform turns convolution into multiplication.
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The Laplace transform properties

Convolution cont.

Let's show that L{f(t) x g(¢t)} = F(s)G(s) :

H(s) = /:: st ( / to F(P)glt — T)d7> dt

oo t
= —st _
a /tO /To e f(7)g(t — T)drdt

where we integrate over the triangle 0 < 7 < t. By changing the order

of the integration and changing the limits of integration yield

H(s) = / : /: =t f(r)g(t — 7)dtdr
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The Laplace transform properties

Convolution cont.

Change variable t to t = t — 7;dt = dt; region of integration becomes
T>0,t>0

: <[:0 i ) </H _%ﬁ)

= F(s)G(s)
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The Laplace transform properties

Convolution cont.

Example: Using the time convolution property of the Laplace transform, determine

c(t) = e®*u(t) * e’*u(t). From the convolution property, we have

C(s):11 1[1_1]

s—as—b:a—b s—a s—0b

The inverse transform of the above equation yields

1
c(t) = —— (e — ),  t>o0.
a—2>b
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Applications

Solution of Differential and Integro-Differential Eqautions

Solve the second-order linear differential equation
(D? +5D +6)y(t) = (D + 1) f(¢t)

if the initial conditions are y(0~) = 2,9(0~) = 1, and the input f(t) = e~ %tu(t).

The equation is

Py L dy _df
Let
y(t) <= Y (s).
Then
dy _
T < sY(s) —y(07) =sY(s) — 2.
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Applications

Solution of Differential and Integro-Differential Eqautions

2
% > 5%V (s) —sy(07) —§(07) = s*Y(s) — 2s — L.

Moreover, for f(t) = e~ *tu(t),

1 df _ s s
(s) Pl o = sF() = f(07) i )
Taking the Laplace transform, we obtain
2 s 1
Y(s)—2s—1 5[sY(s) — 2] +6Y(s) =
[52Y (8) = 25— 1] +5[sY () = 2] 4 6Y (5) = =+ ——

Collecting all the terms of Y (s) and the remaining terms separately on the left-hand side, we

obtain

1
(s2 4+ 55+ 6)Y(s) — (25 +11) = 21
s+4
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Applications

Solution of Differential and Integro-Differential Equations
Therefore

s+ 1  2s?+20s+45
s+4 s+4

(2 +55+6)Y(s) = (25 + 11) +

and

252 + 20s + 45
(s24+5s+6)(s+4)
2524205445
C (5+2)(s+3)(s+4)

Y(s) =

Expanding the right-hand side into partial fractions yields

13/2 3 3/2

Y(s) = —
s+ 2 s+3 s+4

The inverse Laplace transform of the above equation yields

13 3
y(t) = (?672t —3e73 — 567‘“) u(t).
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Applications

Zero-Input and Zero-State Components of Response

e The Laplace transform method gives the total response, which

includes zero-input and zero-state components.

e The initial condition terms in the response give rise to the

zero-input response.

For example in the previous example,

1
(52 + 5s + 6)Y (s) — (25 + 11) = z*

+4
so that
1
(2 +55+6)Y(s) = (2s411) + 214
———
initial condition terms | ™
Input terms
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Applications

Zero-Input and Zero-State Components of Response

Therefore
2s + 11 s+1
Y =
() s2+5s+6 +(s+4)(52+55+6)
—_——
zero-input component zero-state component
7 5 -1/2 2 3/2
= — + + _
s+2 s+3 s+2 s4+3 s+4

Taking the inverse transform of this equation yields

1 3
y(t) = (76_2t — 56_3t)u(t) + (—56_% + 273 — ie_u)u(t)

zero-state response

zero-input response
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Analysis of Electrical Networks

Basic concept

e |t is possible to analyze electrical networks directly without having
to write the integro-differential equation.

e This procedure is considerably simpler because it permits us to
treat an electrical network as if it was a resistive network.

e To do such a procedure, we need to represent a network in
“frequency domain” where all the voltages and currents are

represented by their Laplace transforms.

Lecture 5: Laplace Transform and Its Applications <52/62 » ©



Analysis of Electrical Networks

Basic concept

zero initial conditions case:
If v(t) and i(t) are the voltage across and the current through an
inductor of L henries, then

di(t)

v(t)=1L 7

< V(s) =sLI(s), i(0) = 0.

Similarly, for a capacitor of C farads, the voltage-current relationship is

dv(t) 1 B
0 V(s) = =1I(s), v(0) = 0.

i(t) = C —

For a resistor of R ohms, the voltage-current relationship is

u(t) = Ri(t) < V(s) = RI(s).
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Analysis of Electrical Networks

Basic concept

e Thus, in the “frequency domain,” the voltage-current relationships
of an inductor and a capacitor are algebraic;

o These elements behave like resistors of “resistance” Ls and 1/C's,
respectively.

e The generalized “resistance” of an element is called its impedance
and is given by the ratio V(s)/I(s) for the element (under zero
initial conditions).

e The impedances of a resistor of R ohms, and inductor of L henries,
and a capacitance of C farads are R, Ls, and 1/C's, respectively.

e The Kirchhoff's laws remain valid for voltages and currents in the
frequency domain.
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Analysis of Electrical Networks

A simple RC circuit
Find the loop current i(t) in the circuit, if all the initial conditions are zero.

1H 3N s

10u(t) i(t)

In the first step, we represent the circuit in the frequency domain shown in the right hand
side. The impedance in the loop is

2 243542
Z(S):5+3+,:w
S S

The input voltage is V(s) = 10/s. Therefore, the loop current I(s) is

V(s) 10/s 10 10 10 10

213s+2 (s+1)(s+2) s+1 s+2

T Z(s)  (s2+3s+2)/s

1(s)

The inverse transform of the equation yields: (t) = 10(e™* — e~2%)u(t).
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Analysis of Electrical Networks

Initial Condition Generators
A capacitor C' with an initial voltage v(0) can be represented in the
frequency domain by an uncharged capacitor of impedance 1/C's in
series with a voltage source of value v(0)/s or as the same uncharged
capacitor in parallel with a current source of value Cv(0).

e i) L 1)
i
o(t) B ~0) V(s) e
%)@
) (a) ) (b)
dv
t)=Cop I(s) = C[sV (s) —v(0)]

Rearranging the equation, we obtain

V(s) = é[(s) + ”(SO) or V(s) = o

Lecture 5: Laplace Transform and Its Applications
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Analysis of Electrical Networks

Initial Condition Generators

An inductor L with an initial voltage i(0) can be represented in the
frequency domain by an inductor of impedance Ls in series with a
voltage source of value Li(0) or by the same inductor in parallel with a
current source of value i(0)/s.

(a) (b)
olt) = L% e V(s) = L[sI(s) — i(0)]

Rearranging the equation, we obtain

V(s) = sLI(s) — Li(0) or V(s) = Ls [I(S) - Z(‘S)]
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Analysis of Electrical Networks

A simple RLC circuit with initial condition generators

Find the loop current i(t) in the circuit, if y(0) = 2 and v (0) = 10

10u(t)

o

=
=
s

The right hand side figure shows the frequency-domain representation of the circuit.
Applying mesh analysis we have

10 5 10
—— +sY(s) —2+2Y(s)+ -Y(s)+ — =0
s s s
2
5) =
(=) s+2+2
_ 2s
T s242545
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Analysis of Electrical Networks

A simple RLC circuit with initial condition generators

Yes) 2s 2s + 1) 2
s) = = _
s2+2s+5  (s+1)2+22  (s+1)2+22)
Therefore
y(t) = e (2 cos 2t — sin 2t) = e~ (C cos O cos 2t — C'sin O sin 2t),
since
2
C=v22+1=V5  0=tan™' T =266°
then

y(t) = V5et cos(2t + 26.6°)u(t).
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Analysis of Electrical Networks

An RLC circuit with initial condition generators

The switch in the circuit is in the closed position for a long time before ¢ = 0, when it is

opened instantaneously. Find the currents y1(t) and ya(¢) for t > 0.

) 19
Uy
1F
4V=

_ > 1
20 V= Q; ya(t) ZH

1
| o)==

When the switch is closed and the steady-state conditions are reached, the capacitor voltage
vc = 16 volts, and the inductor current y2 = 4 A. The right hand side circuit shows the

transformed version of the circuit in the left hand side. Using mesh analysis, we obtain

B e -l =

1
—£Yi(s) + ng(s) + ng(s) -
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Analysis of Electrical Networks

An RLC circuit with initial condition generators

Rewriting in matrix form, we have

ER Y1<s>]_{;*}
-+ sesllee] T
Therefore,
24(s + 2)
Y =
)= F T
__A+2) -2 48
T (s+3)(s+4) s+3 s+4
4(s+7 16 12
Ya(s) = 2( ) = - .
s% 4 Ts+ 12 s+3 s+4
Finally,

y1(t) = (—24e7 3t + 48~ )u(t)
ya(t) = (16673t — 124 )u(t)
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