Lecture 1: Continuous-Time Signals

Asst. Dr.-Ing. Sudchai Boonto

Department of Control System and Instrumentation Engineering King Mongkut's Unniversity of Technology Thonburi Thailand

Outline

- Measuring the size of a signal
- Some useful signal operations
- Some useful signal models
- Even and Odd functions
- function plot with MATLAB

Measuring the size of a signal

Size of a signal u is measured in may ways but we consider only three of them:

• energy (integral-absolute square):

$$E_f = \int_{-\infty}^{\infty} |u(t)|^2 dt$$

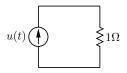
• power (mean-square):

$$P_{f} = \lim_{T \to \infty} \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} |u^{2}(t)| dt$$

• root-mean-square (RMS):

$$\mathsf{rms} = \left(\lim_{T \to \infty} \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} |u^2(t)| dt\right)^{1/2}$$

Energy and Power signal



• the total energy is
$$E = \int_{-\infty}^{\infty} |u(t)|^2 dt$$

• the average power is
$$P = \lim_{T \to \infty} \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} |u^2(t)| dt$$

• if
$$u(t) = a$$
 A for $t \ge 0$

•
$$E = \infty$$
 (the energy signal is not exist.)

•
$$P = a^2$$

- x(t) is an energy signal if its energy is finite. A necessary condition for the energy to be finite is that the signal amplitude approach to zero as |t| → ∞.
- x(t) is a power signal if its power is finite and nonzero.
- Since the average power is the averaging over an infinitely large interval, a signal with finite energy has zero power, and a signal with finite power has infinite energy.
- if x(t) is not satisfied both above conditions, it is not an energy signal or a power signal.

Energy and Power signal cont.

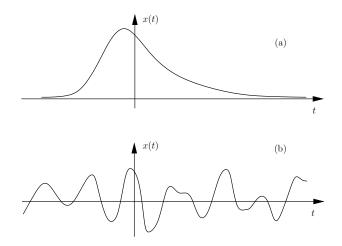
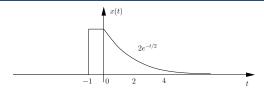


Figure: (a) a signal with finite energy (b) a signal with finite power.



The signal amplitude approaches to 0 as $|t|
ightarrow \infty$. Its energy is given by

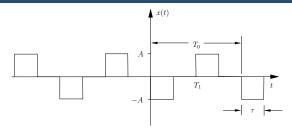
$$E = \int_{-\infty}^{\infty} x^2(t)dt = \int_{-1}^{0} (2)^2 dt + \int_{0}^{\infty} 4e^{-t} dt = 4 + 4 = 8$$

If we change $2e^{-t/2}$ to a more general $Ae^{-\alpha t}$, then the energy signal is

$$E = 4 + \int_0^\infty A^2 e^{-2\alpha t} dt = 4 - \left. \frac{A^2}{2\alpha} e^{-2\alpha t} \right|_0^\infty = 4 + \frac{A^2}{2\alpha}$$

The power signal of the first term is obvious zero and the second term is given by

$$P = \lim_{T \to \infty} \frac{1}{T} \int_0^{\frac{T}{2}} A^2 e^{-2\alpha t} dt = \lim_{T \to \infty} -\frac{1}{T} \left. \frac{A^2}{2\alpha} e^{-2\alpha t} \right|_0^{\frac{T}{2}} = 0$$



It is obvious that the energy signal does not exist (infinite energy since $x(t) \neq 0$ as $|t| \rightarrow \infty$) Consider the power signal

$$P = \lim_{T \to \infty} \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} x^2(t) dt = \frac{1}{T_0} \int_0^{T_0} A^2 dt$$
$$= \frac{1}{T_0} \left[A^2 t \big|_0^{\tau} + A^2 t \big|_{T_1}^{T_1 + \tau} \right]$$
$$= \frac{1}{T_0} \left[A^2 \tau + A^2 (T_1 + \tau) - A^2 T_1 \right]$$
$$= \frac{2}{T_0} A^2 \tau$$

Lecture 1: Continuous-Time Signals

∢ 8/74 ▶ ⊚

Determine the power and the rms value of $f(t) = C \cos(\omega_0 t + \theta)$

This is a periodic signal with period $T_0 = 2\pi/\omega_0$. It does not converge to 0 when $t \to \infty$. Because it is a periodic signal, we can compute its power by averagin its energy over one period T_0 .

$$P = \lim_{T \to \infty} \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} C^2 \cos^2(\omega_0 t + \theta) dt$$

Since $\cos^2(\omega_0 t + \theta) = 1 - \sin^2(\omega_0 t + \theta) = 1 + \cos(2\omega_0 t + 2\theta) - \cos^2(\omega_0 t + \theta)$ or $\cos^2(\omega_0 t + \theta) = \frac{1}{2}(1 + \cos(2\omega_0 t + 2\theta))$, then

$$P = \lim_{T \to \infty} \frac{C^2}{2T} \int_{-\frac{T}{2}}^{\frac{T}{2}} [1 + \cos(2\omega_0 t + 2\theta)] dt$$
$$= \lim_{T \to \infty} \frac{C^2}{2T} \int_{-\frac{T}{2}}^{\frac{T}{2}} dt + \lim_{T \to \infty} \frac{C^2}{2T} \int_{-\frac{T}{2}}^{\frac{T}{2}} \cos(2\omega_0 t + 2\theta) dt$$
$$= \frac{C^2}{2}$$

Hence, the rms values is $C/\sqrt{2}$

Determine the power and the rms value of

$$f(t) = C_1 \cos(\omega_1 t + \theta_1) + C_2 \cos(\omega_2 t + \theta_2)(\omega_1 \neq \omega_2)$$

$$P = \lim_{T \to \infty} \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} \left[C_1 \cos(\omega_1 t + \theta_1) + C_2 \cos(\omega_2 t + \theta_2) \right]^2 dt$$

$$= \lim_{T \to \infty} \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} C_1^2 \cos^2(\omega_1 t + \theta_1) dt + \lim_{T \to \infty} \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} C_2^2 \cos^2(\omega_2 t + \theta_2) dt$$

$$+ \lim_{T \to \infty} \frac{2C_1 C_2}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} \cos(\omega_1 t + \theta_1) \cos(\omega_2 t + \theta_2) dt$$

The first and second integrals on the right-hand side are the powers of the two sinusoids, which are $C_1^2/2$ and $C_2^2/2$ as found in the previous example. The third term is zero if $\omega_1 \neq \omega_2$, and we have

$$P=\frac{C_1^2}{2}+\frac{C_2^2}{2}$$
 and the rms value is $\sqrt{(C_1^2+C_2^2)/2}$

Lecture 1: Continuous-Time Signals

∢ 10/74 ► ⊙

This result can be extended to a sum of any number of sinusoids with distinct frequencies. If

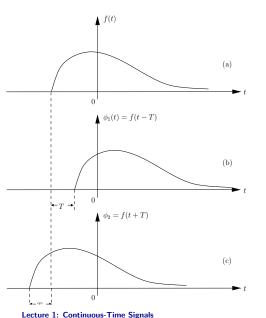
$$f(t) = \sum_{n=1}^{\infty} C_n \cos(\omega_n t + \theta_n)$$

where none of the two sinusoids have identical frequencies, then

$$P = \frac{1}{2} \sum_{n=1}^{\infty} C_n^2$$

Note: This is ture only if $\omega_1 \neq \omega_2$. If $\omega_1 = \omega_2$, the integrand of the third term contains a constant $\cos(\theta_1 - \theta_2)$, and the third term $\rightarrow 2C_1C_2\cos(\theta_1 - \theta_2)$ as $T \rightarrow \infty$.

Time Shifting



- f(t) in Fig. (b) is the same signal like
 (a) but delayed by T seconds
- f(t) in Fig. (c) is the same signal like
 (b) but advanced by T seconds
- Whatever happens in f(t) in at some instant t also happens in \$\phi_1(t)\$ T seconds later and happens in \$\phi_2(t)\$ T seconds before.
- we have delay:

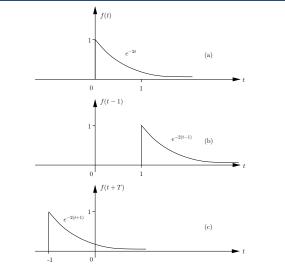
$$\phi_1(t+T) = f(t) \text{ or } \phi_1(t) = f(t-T)$$

advance:

$$\phi_2(t-T) = f(t) \text{ or } \phi_2(t) = f(t+T)$$

$$\blacktriangleleft 12/74 \blacktriangleright \odot$$

Time Shifting example



(a) signal f(t) (b) f(t) delayed by 1 second (c) f(t) advanced by 1 second

Time Shifting

example

An exponential function $f(t) = e^{-2t}$ shown in the previous Fig. is delayed by 1 second. Sketch and mathematically describe the delayed function. Repeat the problem if f(t) is advanced by 1 second. The function f(t) can be described mathematically as

$$f(t) = \begin{cases} e^{-2t} & t \ge 0\\ 0 & t < 0 \end{cases}$$

Let $f_d(t)$ represent the function f(t) delayed by 1 second. Replace t with t-1, thus

$$f_d(t) = f(t-1) = \begin{cases} e^{-2(t-1)} & t-1 \ge 0 \text{ or } t \ge 1 \\ 0 & t-1 < 0 \text{ or } t < 1 \end{cases}$$

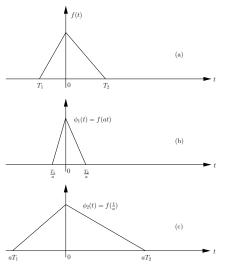
Let $f_a(t)$ represent the function f(t) advanced by 1 second. Replace t with t+1, thus

$$f(t) = f(t+1) = \int e^{-2(t+1)} t + 1 \ge 0 \text{ or } t \ge -1$$

Lecture 1: Continuous-Time Signals

∢ 14/74 ▶ ⊚

Time Scaling



Time scaling a signal.

- The compression or expansion of a signal in time is known as time scaling.
- f(t) in Fig. (b) is f(t) compressed in time by a factor of a.
- f(t) in Fig. (c) is f(t) expanded in time by a factor of a.
- Whatever happens in f(t) at some instant t also happens to \(\phi(t)\) at the instant t/a or at
- we have

compress:

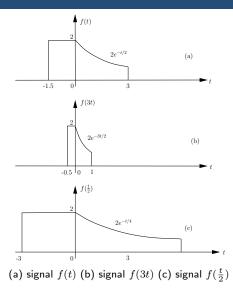
$$\phi(\frac{t}{a})=f(t) \text{ or } \phi(t)=f(at)$$

expand:

$$\phi(at) = f(t) \text{ or } \phi(t) = f(\frac{t}{a})$$

◀ 15/74 ▶ ⊚

Time Scaling example



◀ 16/74 ► ⊚

Time Scaling

example

A signal f(t) shown in the Fig. Sketch and describe mathematically this isgnal time-compressed by factor 3. Repeat the problem for the same signal time-expanded by factor 2. The signal f(t) can be described as

$$f(t) = \begin{cases} 2 & -1.5 \le t < 0 \\ 2e^{-t/2} & 0 \le t < 3 \\ 0 & \text{otherwise} \end{cases}$$

Let $f_c(t)$ is a time-compressed of f(t) by factor 3. Replace t with 3t, we have

$$f_c(t) = f(3t) = \begin{cases} 2 & -1.5 \le 3t < 0 \text{ or } -0.5 \le t < 0 \\ 2e^{-3t/2} & 0 \le 3t < 3 \text{ or } 0 \le t < 1 \\ 0 & \text{ otherwise} \end{cases}$$

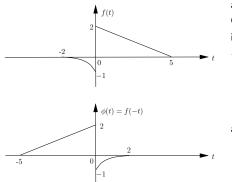
Time Scaling

example

Let $f_e(t)$ is a time-expanded by factor 2. Replace t with t/2, we have

$$f_e(t) = f(\frac{t}{2}) = \begin{cases} 2 & -1.5 \le \frac{t}{2} < 0 \text{ or } -3 \le t < 0\\ 2e^{-t/4} & 0 \le \frac{t}{2} < 3 \text{ or } 0 \le t < 6\\ 0 & \text{otherwise} \end{cases}$$

Time inversion



Time inversion (reflection) of a signal.

The inversion or folding [the reflection of f(t) about the vertical axis] given us the signal $\phi(t)$. Observe that whatever happens in f(t) at the instant t also happens in $\phi(t)$ at the time instant -t. Therefore

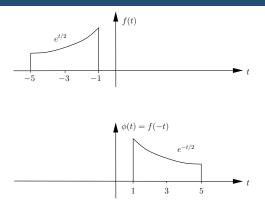
 $\phi(-t) = f(t)$

and

$$\phi(t) = f(-t)$$

note: the mirror image of f(t) about the horizontal axis is -f(t).

Time inversion



The instants -1 and -5 in f(t) are mapped into instants 1 and 5 in f(-t). Because $f(t) = e^{t/2}$, we have $f(-t) = e^{-t/2}$. The signal f(-t) is depicted above.

$$f(t) = \begin{cases} e^{t/2} & -1 \ge t > -5 \\ 0 & \text{otherwise} \end{cases} \text{ and } f(-t) = \begin{cases} e^{-t/2} & -1 \ge -t > -5 \text{ or } 1 \le t < 5 \\ 0 & \text{otherwise} \end{cases}$$

Combined operations

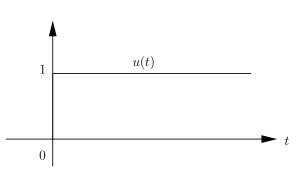
The most general operation involving all the three operations is f(at - b), which is realized in two possible sequences of operation:

- Time-shift f(t) by b to obtain f(t-b). Then time-scale the shifted signal f(t-b) by a (that is, replace t with at) to obtain f(at-b).
- Time-scale f(t) by a to obtain f(at). Then time-shift f(at) by ^b/_a (that is replace t with (t ^b/_a) to obtain f[a(t ^b/_a)] = f(at b)). In either case, if a is negative, time scaling involves time inversion.

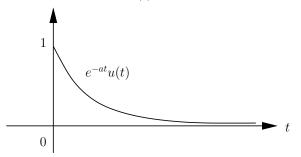
Some Useful Signal Models Unit step function u(t)

A unit step function u(t) is defined by

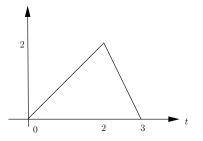
$$u(t) = \begin{cases} 1 & t \ge 0 \\ 0 & t < 0 \end{cases}$$



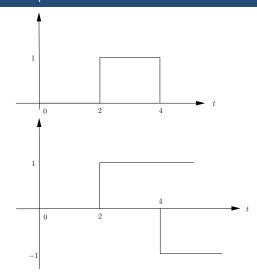
- We can force a signal to start at t = 0 by multiplying the signal with u(t) (the signal has a value of zero for t < 0).
- For example, the signal e^{-at} represents an everlasting exponential that starts at t = -∞. the causal form of this exponential shown in Fig. can be describe as e^{-at}u(t).



• The unit step function can be used to specify a function with different mathematical descriptions over different intervals.



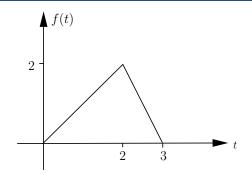
- a mathematic description of above signal is inconvenient.
- we can describe a signal by using unit step signals.



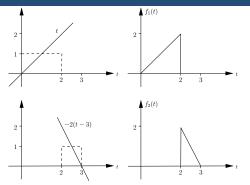
- the unit step function u(t)delayed by T seconds is u(t-T)
- from the lower Fig., it is clear that

$$f(t) = u(t-2) - u(t-4)$$

Unit step function u(t) example



Describe the signal in Fig. by using unit step signals.

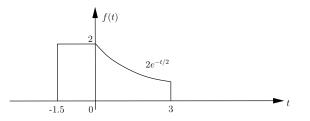


- $f_1(t)$ can be obtained by multiplying the ramp t by the gate pulse u(t) u(t-2), then $f_1(t) = t[u(t) u(t-2)]$
- $f_2(t)$ can be obtained by multiplying another ramp by the gate pulse u(t-2) u(t-3), then $f_2(t) = -2(t-3)[u(t-2) u(t-3)]$

$$f(t) = f_1(t) + f_2(t) = t[u(t) - u(t-2)] - 2(t-3)[u(t-2) - u(t-3)]$$

= tu(t) - 3(t-2)u(t-2) + 2(t-3)u(t-3)

Unit step function u(t) example



Describe the signal in Fig. by a single expression valid for all t. (Recall in previous example, we use 3 equations to describe the signal.)

 Over the interval from -1.5 to 0, the signal can be described by a constant 2, and over the interval from 0 to 3, it can be described by 2e^{-t/2}. Therefore

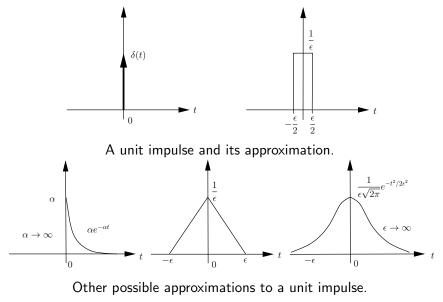
$$f(t) = \underbrace{2[u(t+1.5) - u(t)]}_{f_1(t)} + \underbrace{2e^{-t/2}[u(t) - u(t-3)]}_{f_2(t)}$$
$$= 2u(t+1.5) - 2(1 - e^{-t/2})u(t) - 2e^{-t/2}u(t-3)$$

Figure: P. A. M. Dirac

(Dirac's) delta function or impulse δ is an *idealization* of a signal that

• it is very large near t = 0 and very small away from t = 0, hence $\delta(t) = 0, t \neq 0$

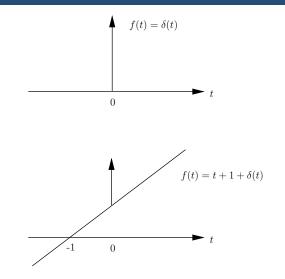
• it has integral 1 or
$$\int_{-\infty}^{\infty} \delta(t) dt = 1$$



Lecture 1: Continuous-Time Signals

∢ 30/74 ▶ ⊚

on plots δ is shown as a solid arrow:



The Unit Impulse Function $\delta(t)$ Physical interpretation

Impulse functions are used to model physical signals

- functions that act over short time intervals
- functions whose effect depends on integral of signal

example:

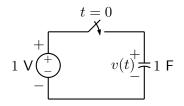
- hammer blow, or bat hitting ball, at $t=2\,$
- force f acts on mass m between $t=1.999~{\rm sec}$ and $t=2.001~{\rm sec}$ $\ell^{2.001}$
- $\int_{1.999}^{2.001} f(t)dt = I$ (mechanical impulse, N·sec)
- blow induces change in velocity of

$$v(2.001) - v(1.999) = \frac{1}{m} \int_{1.999}^{2.001} f(\tau) d\tau = I/m$$

for applications we can model force as an impulse at t=2, with magnitude I.

Physical interpretation example

Rapid charging of capacitor



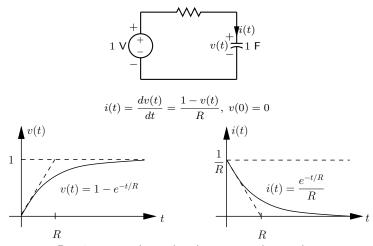
assuming v(0) = 0, what is v(t), i(t) for t > 0

- i(t) is very large, for a very short time
- a unit charge is transferred to the capacitor 'almost instantaneously'
- v(t) increases to v(t) = 1 'almost instantaneously'

to calculate i, v, we need a more detailed model.

Physical interpretation example

Include small resistance

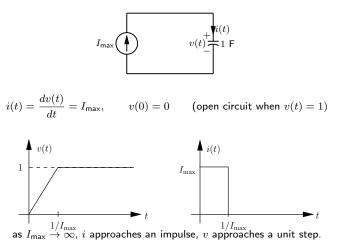


as $R \rightarrow 0$, i approaches an impulse, v approaches a unit step

Physical interpretation example

Assume the current delivered by the source is limited:

if $v(t) \leq 1,$ the source acts as a current source $i(t) = I_{\max}$



The Unit Impulse Function $\delta(t)$ Physical interpretation example

in conclusion,

- large current i acts over very short time between t=0 and ϵ
- total charge transfer is $\int_{0}^{\epsilon} i(t)dt = 1$
- resulting change in v(t) is $v(\epsilon) v(0) = 1$
- can approximate i as impulse at t = 0 with magnitude 1

modeling current as impulse

- obscures details of current signal
- obscures details of voltage change during the rapid charging
- preserves total change in charge, voltage
- is reasonable model for time scales $\gg \epsilon$

Let us consider what happens when we multiply the unit impulse $\delta(t)$ by a function $\phi(t)$ that is known to be continuous at t = 0.

 $\phi(t)\delta(t) = \phi(0)\delta(t),$

where $\phi(t)$ at t = 0 is $\phi(0)$.

Similarly, if $\phi(t)$ is multiplied by an impulse $\delta(t-T)$ (impulse located at t = T) then

$$\phi(t)\delta(t-T) = \phi(T)\delta(t-T)$$

The Unit Impulse Function $\delta(t)$ Sampling Property of the Unit Impulse Function

By the multiplication property, it follows that

$$\int_{-\infty}^{\infty} \phi(t)\delta(t)dt = \phi(0)\int_{-\infty}^{\infty} \delta(t)dt = \phi(0)$$

provided $\phi(t)$ is continuous at t = 0.

- the area under the product of a function with an impulse $\delta(t)$ to the value of the function at the instant where the unit impulse is located.
- This property is known as the **sampling** or **sifting property** of the unit impulse.

• If
$$\phi(t)$$
 continuous at $t = T$ we have $\int_{-\infty}^{\infty} \phi(t)\delta(t-T)dt = \phi(T)$

The Unit Impulse Function $\delta(t)$

Sampling Property of the Unit Impulse Function example.

example:

$$\begin{split} \int_{-2}^{3} f(t) \left(2 + \delta(t+1) - 3\delta(t-1) + 2\delta(t+3)\right) dt \\ &= 2 \int_{-2}^{3} f(t) dt + \int_{-2}^{3} f(t) \delta(t+1) dt - 3 \int_{-2}^{3} f(t) \delta(t-1) dt \\ &+ 2 \int_{-2}^{3} f(t) \delta(t+3)) dt \\ &= 2 \int_{-2}^{3} f(t) dt + f(-1) - 3f(1) + 0 \end{split}$$

The definition of the unit impulse function given before is not mathematically rigorous:

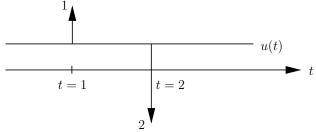
- it is not a real function (Dirac's δ is what is called a *distribution*)
- it does not define a unique function: for example, it can be shown that $\delta(t) + \dot{\delta}(t)$ also satisfies the definition.
- some innocent looking expressions don't make any sense at all (e.g., $\delta^2(t)$ or $\delta(t^2)$)

A **genrealized function** is defined by its effect on other functions instead of by its value at every instant of time. This approach the impulse function is defined by the smpling property.

The Unit Impulse Function $\delta(t)$ Integrals of impulsive functions

Integral of a function with impulses has jump at each impulse, equal to the magnitude of impulse.

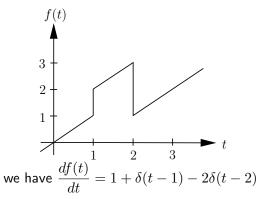
example: $x(t) = 1 + \delta(t-1) - 2\delta(t-2)$; define $f(t) = \int_0^t x(\tau) d\tau$



$$\begin{split} f(t) &= t \text{ for } t < 1 \text{ (} f(1) \text{ and } f(2) \text{ are undefined}\text{),} \\ f(t) &= t+1 \text{ for } 1 < t < 2, \qquad f(t) = t-1 \text{ for } t > 2 \end{split}$$

We now present an interesting application of the generalized function definition of an impulse:

- derivative of unit step function is $\delta(t)$
- derivative of discontinuous functions f(t) of the previous page



The Unit Impulse Function $\delta(t)$ Derivatives of discontinuous functions

Because the unit step function u(t) is discontinuous at t = 0, its derivative du/dt does not exist at t = 0 in the ordinary sense. We will shown that this derivative does exist in the generalized sense, and it is $\delta(t)$.

$$\int_{-\infty}^{\infty} \frac{du}{dt} \phi(t) dt = u(t)\phi(t) \Big|_{-\infty}^{\infty} - \int_{-\infty}^{\infty} u(t)\dot{\phi}(t) dt$$
$$= \phi(\infty) - 0 - \int_{0}^{\infty} \dot{\phi}(t) dt$$
$$= \phi(\infty) - \phi(t) \Big|_{0}^{\infty}$$
$$= \phi(0)$$

This result shows that du/dt satisfies the sampling property of $\delta(t)$. Therefore it is an impulse $\delta(t)$ in the generalized sense. Lecture 1: Continuous-Time Signals

The Unit Impulse Function $\delta(t)$

Derivatives of discontinuous functions

That is

$$\frac{du}{dt} = \delta(t)$$

Consequently

$$\int_{-\infty}^t \delta(\tau) d\tau = u(t)$$

The area from $-\infty$ to t under the limiting form of $\delta(t)$ is zero if t < 0 and unity if $t \ge 0$. Consequently

$$\int_{-\infty}^t \delta(\tau) d\tau = \begin{cases} 0 & t < 0 \\ 1 & t \ge 0 \end{cases} = u(t)$$

The Unit Impulse Function $\delta(t)$ Derivatives of impulse functions

Integration by parts suggests we define

$$\int_{-\infty}^{\infty} \dot{\delta}(t) f(t) dt = \delta(t) f(t) \Big|_{-\infty}^{\infty} - \int_{-\infty}^{\infty} \delta(t) \dot{f}(t) dt = -\dot{f}(0)$$

provided a<0,b>0, and $\dot{f}(t)$ continuous at t=0

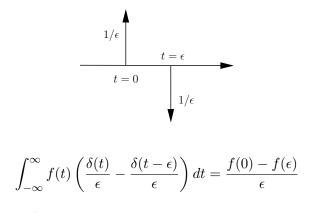
- $\dot{\delta}(t)$ is called **doublet**
- $\dot{\delta}(t), \ddot{\delta}(t)$, etc. are called higher-order impulses
- similar rules for higher-order impulses:

$$\int_{-\infty}^{\infty} \delta^{(k)}(t) f(t) dt = (-1)^k f^{(k)}(0)$$

if
$$f^{(k)}$$
 continuous at $t = 0$.

The Unit Impulse Function $\delta(t)$ Derivatives of impulse functions

Interpretation of doublet $\dot{\delta}(t)$: take two impulses with magnitude $\pm 1/\epsilon$, a distance ϵ apart, and let $\epsilon \to 0$



converges to $-\dot{f}(0)$ if $\epsilon \to 0$.

Let s be a complex number $s = \sigma + j\omega$.

$$e^{st} = e^{(\sigma + j\omega)t} = e^{\sigma t}e^{j\omega t}$$
$$= e^{\sigma t}(\cos \omega t + j\sin \omega t)$$

If $s^* = \sigma - j\omega$ (the conjugate of s), then

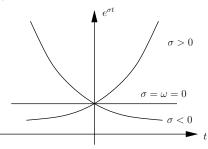
$$e^{s^*t} = e^{(\sigma - j\omega)t} = e^{\sigma t}e^{-j\omega t}$$
$$= e^{\sigma t}(\cos \omega t - j\sin \omega t)$$

and

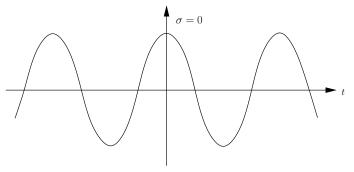
$$e^{\sigma t}\cos\omega t = \frac{1}{2}(e^{st} + e^{s^*t})$$

The function e^{st} encompasses a large class of functions:

- A constant $k = ke^{0t}$ (s = 0)
- A monotonic exponential $e^{\sigma t}$ ($\omega = 0, s = \sigma$)
- For signals whose complex frequencies lie on the real axis (σ-axis, where ω = 0). these signals are monotonically increasing or decreasing exponentials. The case s = 0 (σ = ω = 0) corresponds to a constant (dc) signal because e^{0t} = 1.



- For signals whose frequencies lie on the imaginary axis $(j\omega$ axis where $\sigma = 0$), $e^{\sigma t} = 1$.
- These signals are conventional sinusoids with constant amplitude.



• a constant amplitude sinusoid $\cos(\omega t + \theta)$ can be expressed as a sum of exponentials $e^{j\omega t}$ and $e^{-j\omega t}$

- An exponentially varying sinusoid $e^{\sigma t} \cos(\omega t)$ $(s = \sigma t \pm j\omega)$
- Let $\sigma>0$ and $\omega>0$, then an exponentially growing sinusoid $e^{at}\cos(\omega t)$ can be expressed as

$$f(t) = \frac{1}{2} (e^{(\sigma+j\omega)t} + e^{(\sigma-j\omega)t})$$

with complex frequencies $\sigma + j\omega$ and $\sigma - j\omega$.

• Let $\sigma>0$ and $\omega>0$, then an exponentially decaying sinusoid $e^{-at}\cos(\omega t+\theta)$ can be expressed as

$$f(t) = \frac{1}{2} (e^{(-\sigma + j\omega)t} + e^{(-\sigma - j\omega)t})$$

with complex frequencies $-\sigma + j\omega$ and $-\sigma - j\omega$.

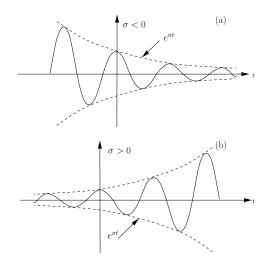
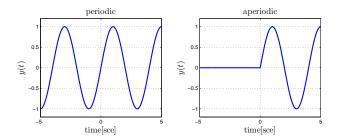


Figure: (a) decaying sinusoid (b) growing sinusoid

A continuous-time signal x(t) is said to be *periodic* if it satisfies the following property:

 $x(t) = x(t+T_0) \qquad \exists T_0 > 0 \text{ and } \forall t.$

The smallest positive value of T_0 that satisfies the periodicity condition is referred to as the *fundamental period* of x(t). A signal that is not periodic is called an *aperiodic* or *non-periodic* signal.



• The reciprocal of the fundamental period of a signal is called the *fundamental frequency*. The fundamental frequency is expressed as follows

$$f_0 = rac{1}{T_0}, ext{ for CT signals },$$

where T_0 is the fundamental periods of the continuous-time signal.

- The frequency of a signal provides useful information regarding how fast the signal changes its amplitude.
- the unit of frequency is cycles per second (c/s) or hertz (Hz).
- we also use *radians per second* as a unit of frequency. Since there are 2π radians (or 360°) is one cycle, a frequency of f_0 hertz is equivalent to $2\pi f_0$ radians per second.

• If radians per second is used as a unit of frequency, the frequency is referred to as the *angular frequency* and is given by

$$\omega_0 = \frac{2\pi}{T_0}$$
, for CT signals.

• A familiar example of a periodic signal is a sinusoidal function represented mathematically by the following expression:

$$x(t) = A\sin(\omega_0 t + \theta).$$

- the sinusoidal signal x(t) has a fundamental period $T_0 = 2\pi/\omega_0$.
- Substituting t by $t + T_0$ in the sinusoidal function, yields

$$x(t+T_0) = A\sin(\omega_0 t + \omega_0 T_0 + \theta).$$

• Since

$$x(t) = A\sin(\omega_0 t + \theta) = A\sin(\omega_0 t + 2m\pi + \theta),$$

for $m = 0, \pm 1, \pm 2, ...$

• the above two expressions are equal iff $\omega_0 T_0 = 2m\pi$. Selecting m = 1, the fundamental period is given by $T_0 = 2\pi/\omega_0$.

Periodic and aperiodic signals Example

- (i) CT sine wave: $x_1(t) = \sin(4\pi t)$ is a periodic signal with period $T_1 = 2\pi/4\pi = 1/2$;
- (ii) CT cosine wave: $x_2(t) = \cos(3\pi t)$ is a periodic signal with period $T_2 = 2\pi/3\pi = 2/3;$
- (iii) CT tangent wave: $x_3(t) = \tan(10t)$ is a periodic signal with period $T_3 = \pi/5$;
- (iv) CT complex exponential: $x_4(t) = e^{j(2t+7)}$ is a periodic signal with period $T_4 = 2\pi/2 = \pi$;

(v) CT sin wave of limited duration: $x_6(t) = \begin{cases} \sin 4\pi t & -2 \le t \le 2\\ 0 & \text{otherwise} \end{cases}$ is an aperiodic signal;

(vi) CT linear relationship: $x_7(t) = 2t + 5$ is an aperiodic signal;

Periodic and aperiodic signals Linear Combination of Two Signals

• A signal g(t) is a linear combination of two periodic signals, $x_1(t)$ with fundamental period T_1 and $x_2(t)$ with fundamental period T_2 as follows:

$$g(t) = ax_1(t) + bx_2(t)$$

is periodic iff

$$\frac{T_1}{T_2} = \frac{m}{n} =$$
 rational number .

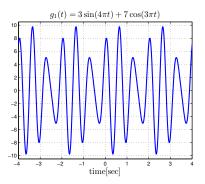
The funcdamental period of g(t) is given by $nT_1 = mT_2$ provided that the values of m and n are chosen such that the greatest common divisor (gcd) between m and n is 1.

Periodic and aperiodic signals Linear Combination of Two Signals

Determine if the following signals are periodic. If yes, determine the fundamental period

$$g_1(t) = 3\sin(4\pi t) + 7\cos(3\pi t)$$

Signals $\sin(4\pi t)$ and $\cos(3\pi t)$ are both periodic signals with fundamental periods 1/2 and 2/3 second, respectively. The ratio of the two fundamental periods yields $\frac{T_1}{T_2} = \frac{1/2}{2/3} = \frac{3}{4}$ which is a rational number. Hence, the linear combination $g_1(t)$ is a periodic signal.

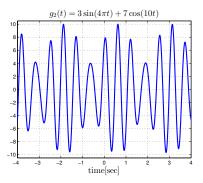


Periodic and aperiodic signals Linear Combination of Two Signals

Determine if the following signals are periodic. If yes, determine the fundamental period

$$g_2(t) = 3\sin(4\pi t) + 7\cos(10t)$$

Signals $\sin(4\pi t)$ and $\cos(10t)$ are both periodic signals with fundamental periods 1/2 and $\pi/5$ second, respectively. The ratio of the two fundamental periods yields $\frac{T_1}{T_2} = \frac{1/2}{\pi/5} = \frac{5}{2\pi}$ which is not a rational number. Hence, the linear combination $g_2(t)$ is a periodic signal.



Even and Odd Functions

A function $f_e(t)$ is said to be an **even function** of t if

$$f_e(t) = f_e(-t)$$

and a function $f_o(t)$ is said to be and **odd function** of t if

$$f_o(t) = -f_o(-t)$$

- an even function $f_e(t)$ has the same value at the instants t and -t for all values of t. Clearly, it is symmetrical about the vertical axis.
- for an odd function $f_o(t)$, the value at the instant t is the negative of its values at the instant -t. Therefore, $f_o(t)$ is anti-symmetrical about the vertical axis.

Even and Odd Functions

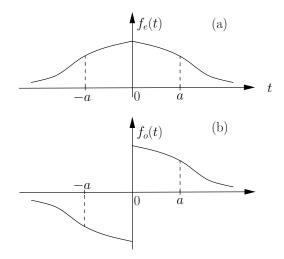


Figure: (a) even function (b) odd function

Even and odd functions have the following property:

- even function \times odd function = odd function
- odd function \times odd function = even function
- even function \times even function = even function

Area

• $f_e(t)$ is symmetrical about the vertical axis, it follows that

•

$$\int_{-a}^{a} f_e(t)dt = 2\int_{0}^{a} f_e(t)dt$$

and it is clear that

$$\int_{-a}^{a} f_o(t)dt = 0$$

Even and Odd Functions Even and Odd Components of a Signal

Every signal f(t) can be expressed as a sum of even and odd components because

$$f(t) = \underbrace{\frac{1}{2}[f(t) + f(-t)]}_{\text{even function}} + \underbrace{\frac{1}{2}[f(t) - f(-t)]}_{\text{odd function}}$$

Consider the function $f(t) = e^{-at}u(t)$

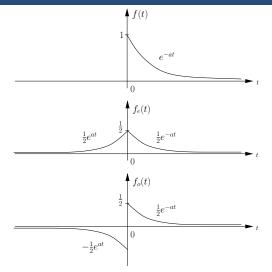
$$f(t) = f_e(t) + f_o(t)$$

$$f_e(t) = \frac{1}{2} \left[e^{-at} u(t) + e^{at} u(-t) \right]$$

$$f_o(t) = \frac{1}{2} \left[e^{-at} u(t) - e^{at} u(-t) \right]$$

Even and Odd Functions

Even and Odd Components of a Signal



Even and Odd Functions

Even and Odd Components of a Signal example

Find the even and odd components of e^{jt}

$$e^{jt} = f_e(t) + f_o(t)$$

where

$$f_e(t) = \frac{1}{2} \left[e^{jt} + e^{-jt} \right] = \cos t$$

and

$$f_o(t) = \frac{1}{2} \left[e^{jt} - e^{-jt} \right] = j \sin t$$

Even and Odd Functions Even and Odd Components of a Signal example

Consider the signal

$$x(t) = \begin{cases} 2\cos(4t) & t > 0 \\ 0 & \text{otherwise} \end{cases}$$

Find its even and odd decomposition. What would happen if x(0) = 2 instead of 0-that is, when we define the sinusoid at t = 0? Explain.

Solution:

The signal x(t) is neither even nor odd given that its values for $t \le 0$ are zero. For its even-odd decomposition, the even component is given by

$$x_e(t) = 0.5[x(t) + x(-t)] = \begin{cases} \cos(4t) & t > 0\\ \cos(4t) & t < 0\\ 0 & t = 0 \end{cases}$$

Even and Odd Functions

Even and Odd Components of a Signal example

and the odd component is given by

$$x_0(t)0.5[x(t) - x(-t)] = \begin{cases} \cos(4t) & t > 0\\ -\cos(4t) & t < 0\\ 0 & t = 0 \end{cases}$$

which when added together become the given signal. If x(0) = 2, we have

$$x_e(t) = 0.5[x(t) + x(-t)] = \begin{cases} \cos(4t) & t > 0\\ \cos(4t) & t < 0\\ 2 & t = 0 \end{cases}$$

while the odd component is the same. The even component has a discontinuity at t = 0.

Unit Step Function with MATLAB

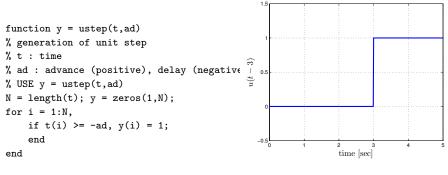


Figure: Using a command y = ustep(t,-3)

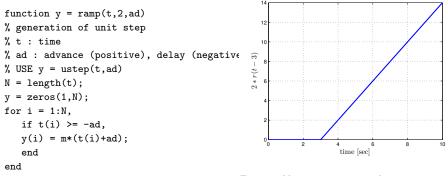


Figure: Using a command y = ramp(t,2,-3)

```
function [ye,yo] = evenodd(t,y)
% even/odd decomposition
% t : time
% y : analog signal
% ye, yo: even and odd components
% USE [ye,yo] = evenodd(t,y)
yr = fliplr(y);
ye = 0.5*(y+yr);
yo = 0.5*(y-yr);
```

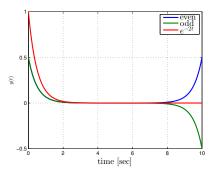


Figure: Using a command [ye,yo]=evenodd(t,y)

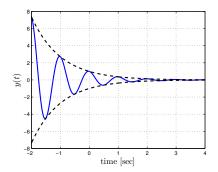
Functions with MATLAB

Example

Use MATLAB to generate the following analog signals.

(a) For the damped sinusoid signal $x(t) = e^{-t}\cos(2\pi t)$ obtain a script to generate x(t) and its envelope.

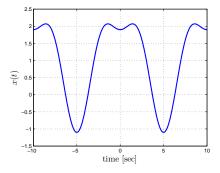
```
% damped sinusoid
t = -2:0.01:4;
x = exp(-t).*cos(2*pi*t);
y = exp(-t);
plot(t,x,'b-','linewidth',2);
grid
hold on
plot(t,y,'--k','linewidth',2);
hold on
plot(t,-y,'--k','linewidth',2);
axis([-2 4 -8 8]);
hold off
```



Functions with MATLAB Example

(b) For a rough approximation of a periodic pulse generated by adding three cosines of frequencies multiples of $\Omega_0 = pi/10$ -that is $x(t) = 1 + 1.5\cos(2\Omega_0 t) - 0.6\cos(4\Omega_0 t)$ write a script to generate $x_1(t)$.

```
% weigthed cosines approximating a pulse
t = -10:0.01:10;
x = 1 + 1.5*cos(2*pi*t/10)...
        -.6*cos(4*pi*t/10);
plot(t,x,'linewidth',2);
grid;
```

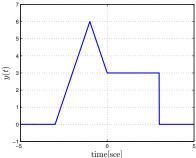


Functions with MATLAB Example

Write a script and the necessary function to generate a signal,

```
y(t) = 3(t+3) - 6(t+1) + 3t - 3u(t-3).
```

```
% ex 1.16
clear all: clf:
Ts = 0.01; t = -5:Ts:5;
% ramp with support [-5,5]
% slope of 3 and advanced
% with respect to the origin by 3
v1 = ramp(t,3,3);
v^2 = ramp(t, -6, 1);
y3 = ramp(t, 3, 0)
% unit-step function with support
% [-5,5] delayed by 3
y4 = -3*ustep(t, -3);
y = y1 + y2 + y3 + y4;
plot(t,y,'linewidth',2); axis([-5,5,-1,7])
grid;
```



- Luis F. Chaparro, Signals and Systems using MATLAB, Academic Press, 2011
- 2. Lecture note on Signals and Systems Boyd, S., Stanford, USA.
- Lathi, B. P., Signal Processing & Linear Systems, Berkeley-Cambridge Press, 1998
- 4. Chaisawadi, A.*Signals and Systems*, The Engineering Institute of Thailand, 2543 (in thai)