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Learning Outcomes

Students should be able to:
» Determine the voltages and currents in the second-order transient circuits.

» Use Graphical and Symbolic tools to plot and check the calculation results.

2/32



Parallel RLC Circuit

Basic parallel RLC circuits

+ ir(to)

so(}) gr w1 Fo

Using KCL, we have

o), 1

d
- o(r)dT + i1 (t0) +cd—1’ =ig(t)

to
Derivative with respect to ¢ of both sides, we obtain

o®, Ldv o) _dis
dt2 R dt L dt
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Series RLC Circuit

Basic series RLC circuits

Y N

C

@) P

Using KVL, we have

1t ;
Ri(t) + 6 " ’i(’?’)d’l‘ + ’Uc(t()) + L% = vs(t)

Derivative with respect to ¢ of both sides, we obtain

d?i di i(t) dvs
L—+R— 4 — =—"2=2
dt? + dt * C dt

Both series and parallel circuits lead to a second-order differential equation with

constant coefficients.
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General Form of 2nd Order Circuit Equation

The RLC circuits, both parallel and series, have the same form equations:

2$ i
ddtgt) aldT(:) +aox(t) = f(t)

If z(t) = zp(t), it is a solution of the general equation, and if z(t) = z.(t), itisa
solution to the homogeneous equation
d?x(t) dz(t)

e (l17+aoif(t) =0

Then

is the solution of the general equation.
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General Form of 2nd Order Circuit Equation

Using the fact that DC sources, i.e., f(t) = A will reach all voltages and currents of the
element is constant, i.e,, z,(¢t) = constant. Then, by substituting this result back to the
equation,

d?xp(t) dxp(t)
az Ty Tew®=

The next step is to find the solution z.(¢) to the homogeneous equation. Rewrite the
equation in the form

Az (t) dzc(t) 5
a2 + QCwn7 + wrxe(t) =0,

2

where a1 = 2wy, and ap = wj;.
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General Form of 2nd Order Circuit Equation

To satisfy the homogenous equation, the frist and second-order derivatives of z.(t)
must have the same form, hence

zo(t) = KeMt
and
A2KeM 4+ ZCwn)\Ke)‘t + wTQLKeM =0
A2 4 2¢Cwp A + w2 =0 (note KeMt # 0 Vt)
We call

> A2+ 2¢wn X + w2 = 0 s called characteristic equation.
» (s called the damping ratio.

> w, is referred to as the undamped natural frequency.
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General Form r Circuit Equation

A2 4 26wp A+ w2 =0
_ —2Cwn & 42wy, — dw?

:_Cwniw'n\/<2_1
>\1:_Cwn+er\/C2_17 /\2:_§wvz_wn\/<2_1

A

Both \; are the solution of the characteristic equation, then the complementary
solution of the general from differential equation is of the form

zo(t) = K1eM?t + Kpet2t,

and

dxc

IC(O):Kl—i-KQ, ar
t=0

=AM K1+ A K2

x(t) is an unforced response of the network (no input). There are three possible

cases.
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The Overdamped Circuit

Case 1¢ > 1 Theterm y/¢2 — 1 is greater than 0. The natural frequencies A1 and Az
are real and unequal. We have

zo(t) = K1eMt 4 Kpet2!

This case is called overdamped response.
Example: Find an expression for v (t) valid for ¢ > 0.

300 ©2

Att <O0:
150 v( ©
- t=0
X - 200 ,
, ve(07) = 150 2= = 60V
ir iR ic 150
5 mHg gzooﬂ 20 nF == vc i,(07) = 500 —0.3A
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The Overdamped Circuit

Att > 0, using KCL:

dv,

i in ic iL+iR+CTf:0
+

: ==vc 1 [t dr

5mH§ §200Q 20 nf Ve = ve(r)dr + UEC ‘c ;;tc 0
to
d?v. 1 dv 1

Cr T —we(t)=0

dt? RC dt LC

We have

1 . [1 )
20wp = — = 2.5 x 10°, Wn = —— =1 x10° rad/s
Cwn, RC n IC /

2wn, =25 %x10°, = (=125

A2 = —Cwn Fwny/ (2 —1=1.25x 10° + 1 x 10°y/1.252 — 1

= —5x10%, -2 x 10°

Then v (t) = Kqe—50000t 1 [y —200000¢ y/
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The Overdamped Circuit

We have
ve(07) =60 =K1 + Ko
From
dvc
i i C—— =0
i, + 1R + a
d SACHE 0~
e :@C(O‘):—zL( ) ve(07)
dt |y—o- C RC

—0.3 60 o
20nF 200 x 20 nF

= —50000K71 — 200000 K2

We have K1 = 80 and K2 = —20. So we obtain

ve (t) — 806—500001’, _ 206—200000t V
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The Overdamped Circuit

1 syms vc(t

)t 8 yout = fplot(vc, [0, 2e-4], 'linewidth"', 2)
R = 200; L =
f

2 5e-3; C = 20e-9; ;
3 eqgn = diff(vc,t,2) +« (1/(R«C))*diff(vc,t) 9 tt = yout.XData;
+ (1/(L%C))*vc(t) == 0; 10 y1 = 80xexp(-5e4*tt);
4 Dvc = diff(vc,t); 1M y2 = -20%exp(-2e5+tt);
5 12 hold on
6 condl = vc(0) == 60; cond2 = Dvc(0) == 0; 13 plot(tt, y1, 'r--', tt, y2, 'k--', '
7 conds = [cond1; cond2]; linewidth ', 1)
8 vc = dsolve(eqn, conds); 14 grid on ; hold off
80 . . . . : : . . .
p
s o ;gﬁt)moom 1
kv = 20200000t | |

50

40

30

vo(t)

20
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The Overdamped Circuit

<
File Tools View Simulation Help

SOP® - a-C-F4-

@-

300

* -

Resistor
150V @
- 2.
Simulink-PS, iy T

Converter
+ +
Resistor1 o Voltage Sensor J— 20nF
200 3, T

"
Inductor ; 5mH

T=0.0005

‘Sample based |Offsat=0

PS-Simulink y
{Ready

£
Converter |

Solver =
Configuration

In Simscape the switch is closed at t = 2 x 104 sec.

13/32



The underdamped Circuit

Case2 ¢ < 1 Theterm 4/¢2 — 1is less than 0. The roots of the characteristic
equation can be written as
A= —Cwn twn/C2—1 (2 —1is negative
= —Cwn Fwny/(=1)(1 = (2) = —Cwn + jwnV1—(2 = -0+ jw

This case is called underdamped response. We have

ze(t) = Ce “tcos(wt +0), o= Cwpand w = wpy/1 -2

complex conjugate roots

z(t) = Kie(motiot | fpe(-o—jw)t
C . C _.p

K, = —¢", Ky = §€7J

:Ec(t) — %efo't (ej(wt+9) + ef(jw+9))

= Ce 7% cos(wt + 0) using Euler's identity
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The underdamped Circuit

Determine i, (t) for the circuit.

iR

t=0 44 ) 4ssz§ N t=0

+ 1
vemR gt F § 100 ©

Att > 0, the circuit is changed to =

Att < 0, capacitor acts as an open circuit,
and inductor acts as a short circuit.

100
i(07)=3(——
i(07) <100+48

ve(07) = 48iL(07) = 97.30 V

) =2.027 A
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The underdamped Circuit

Using KCL, we have

ic+ir +igp =0

dvc 1t vo
c?c 4 - dr+ < =0
at T L/_OOUO(T) TR
d?ve 1 dve 1
— Y ) =0
wz " roa T oove?
Substuting all values, we have
Puc ey, (t) =0
4— v =0,
2 dt C

where

wn = V24 = 4.899 rad/sec, 2(wp =24 = (=0.245
A= —Cwn & jon/1— (2 =—1.2+;4.75
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The underdamped Circuit

vo(t) = Ke 12t cos(4.75t + 0)
ve(07) = 97.30 = K cos(0)

Since ic + 11, +1r = 0, we have

d i (0~ 0~
e __w07) velO7) _ ie6.48 - 233.5200 = —720
dt |,_o- c RC
Then,
d,
% = 9c(07) = —720 = —1.2K cos(6) — 4.75K sin(6)
t=0-

K sin(6) = (=720 + 1.2(97.3))/(—4.75) = 127

K =+/97.32 + 1272 = 160
127
97.30
vo (t) = 160e™ 12! cos(4.75t + 52.54°)

6 =tan~! = 52.54°
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The underdamped Circuit

Note that,
. 1 dveo vo
)= ——— -
) ="35"% ~ 100
1
=0 (—192e7 12 cos(4.75¢ + 52.54°) — 760e ™" sin(4.75¢ + 52.54))

—1.6e7 1% cos(4.75¢ + 52.54°)
—0.8e7 12 cos(4.75t + 52.54°) + 3.167e 12! sin(4.75¢ + 52.54°)
—0.8¢ 712 (cos(4.75t) cos(52.54°) — sin(4.75¢) sin(52.54°))

+3.167e 12 (sin(4.75¢) cos(52.54°) + sin(52.54°) cos(4.75t))
= e 12t (—0.4866 cos(4.75t) + 0.6350 sin(4.75t))

+ e 121 (1.9262sin(4.7t) + 2.5139 cos(4.75t))

= e 121 (2.0273 cos(4.75t) + 2.5612sin(4.75t))
= 3.266e 12! cos(4.75t — 51.34°)
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The underdamped Circuit

3.266 1
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The critically damped Circuit

Case3 ¢ =1 Theterm /¢2 —1is 0. The roots of the characteristic equation are
repeated as

This case is called critically damped response. We have

ze(t) = BleMt + Bgte’\zi.

Consider the following case

() |, da(t)

2
t)=0
dt? dt +a%z(?)

Since the roots are equal to ¢, the homogenous solution could be (wrong!)

zc(t) = K1e~ ' 4 Koe™*t = Kze™
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The critically damped Circuit

One know solution is

xe1(t) = Kze @t and xea(t) = xe1 (B)v(t) = Kze™*tu(t)

The equation becomes

d? d
E[ng_&tv(t)] + 2a$[ng_o‘tv(t)] + a?Kze~*u(t) = 0

Evaluating the derivatives, we obtain

d dv(t

ﬁ[K;;e*atv(t)] = —Kzae “tu(t) + Kze ¢ 71;2 )

d? dv(t) d?u(t)
ZIK —at )] = K. 2 —at t) — 2K. —at K —at

dt[ 3e v(t)] sa‘e” *u(t) sae = + Kse pm
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The critically damped Circuit

Substituting these expressions into the preceding equation yields

d?v(t)
Kze @t —2 =0
3¢ 2
Therefore,
d?v(t)
a2 =0 = U(t) = A1 + Aot

Therefore, the general solution is

X2 (t) = xcl(t)'u(t) = K36_at [Al + Agt] = Ble)\t + the)‘t
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The critically damped Circuit

Select a value for Ry such that the circuit in Fig. below will be characterized by a
critically damped response for ¢t > 0, and a value for Ry such that v(0~) = 100 V.

Finev(t) at ¢ = 1 ms.
Att < 0, capacitor acts as an open circuit,

and inductor acts as a short circuit.
t=0 Ry
t=0 R
I B 4 ir(07) =05 <71>
- R1 + Ro
. , RiR
0.5A 1H Ry U(O_):0.5< 1R2 )
R1 + R2
ic ir iR
Att > 0, the circuit is changed to = el I §4 y §R. Q
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The critically damped Circuit

Using KCL, we have

ic+ir +igp =0
d?ve 1 dve 1

2O w(t)=0
2 Tmoa T1ov®

To have a critically damped response, we have to have (A2 + 2¢wn X + w2 =0,¢ = 1)

2R1C  V LC

Ril=——— =1000Q
"7 10 x 103(1 x 10-6)

We need v(0~) = 100V, so

R1R2

v(07) =05 (m
1 2

in(07) =0.4A

):100 = Ry =1250Q
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The critically damped Circuit

_ -1
Note we have A = SEC = —500, then

o(t) = Bre=590t 4 Byte—500t

v(07) = 100 = By

Fromic +ir, +1r = 0, we have

d i (0~ 0~ ;
@ — ooy = 2O ve) 65 vys
dt |y—o- c R C
d
From (77: = —5 x 10%e 500t { By =500t _ 500 Byte =500
d ;
R = 9c(07) = —5 x 10° = —5 x 10* + By
dt [;—o-

By = —4.5 x 10°
Then

v(t) = 100e =590t — 4.5 x 10°te 2% and v(t = 1 x 1073) = —212.2856 V.
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RLC Circuit: Hard Example

The switch in the network in Fig. below moves from position 1 to position 2 at ¢ = 0.
Compute ig(¢) for t > 0 and use this current to determine v, (t) for ¢ > 0.

6Q L/ io(t)
AMA \ ’0;0'0;6‘ Att < 0, we have
"
2
180 24 — 12
13 F in(07) =i,(07) = =05 A
24VC> vo(t) 24
ve(07) =
v BV 0(07)=0.5(18) =9+ 12=21V
Att >0
. io(t) Using KVL, we have
l 2H
n
1 t di
% " 18 —4+36/ io(T)dr + 222 £ 18i0(t) + 12 = 0
e dt
io(t) Vo (t)
' %, di, () = 0
av 12V dt? dt B
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RLC Circuit: Hard Example

At the steady-state, the capacitor acts as an open circuit. Then 4o, (¢) (particular
solution) is zero, and iop(t) = 0. Considering the transient response, we obtain

d%i di
‘o 1 9% 1L 18ig(t) =0

dt? dt
9 V81 —=T2
/\1,2 = —5 + — =

We have a complementary solution

ioe(t) = Kie %+ Koe % = i,.(07)=05=K; + K>

; dio _ C(0— ve(07) _ 17
Since # o = —9i,(0 )_%_47_71*@](9“
r_ 3K 6K: = K= 1 Koy = 4
5 = 1 2 1=—% 2=
11 14
Goc(t) = io(t) = —Ee*?’t + ge*“ A

Vo(t) = 12 + 18i,(t) = 12 — 33e 73! 4 42¢76% v
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RLC Circuit: Hard Example (Matlab Plot)

0 0.5 1 15 2 25 3
Time[sec]
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RLC Circuit: Hard Example Il

1000  20H

100V

+ Find v (t) attime ¢ > 0.
=f‘c(f)

400 Q

Att=0",we have

o 100 _ . 100(400)
07)=—  =0.2A, 07)=——2 =80V
(07 = 150+ 200 ve(07) = 100+ 200
The circuit at time ¢t > 0.
di dvg
Ri(t) + L2 t) =100, ic(t) =C2C
) i(t) + L + e ic(t) = €2
mo\/C) i(t) 3 F R ve®) d*vc R dve + iv (t) = 100
a2 "L at TrLc'’© LC
d?vo dve

dtQ + 5? + 6’UC (t) = 600
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RLC Circuit: Hard Example Il

The particular solution is
6ucp(t) =600 = wvcp(t) =100V
The characteristic solution is
MNAEBA+6=0 = No2=-2,-3
Then the complementary solution is
vee(t) = Kie 2 + Koe ™3t and  ve(t) = 100 + Ki1e 2t + Kpe 3tV
We have

d 0.2
ve(07) =80V and ic(O*)zc% oc (0
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RLC Circuit: Hard Example Il

Thus

100 + K1 + Ko =80 and —2K; —3Ky =24
Ky =-36, K =16

We obtain

vo(t) = 100 — 36e 2 + 16e 3¢ V
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