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Learning Outcomes

Students should be able to:
▶ Determine the voltages and currents in the second-order transient circuits.
▶ Use Graphical and Symbolic tools to plot and check the calculation results.
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Parallel RLC Circuit

Basic parallel RLC circuits

iS(t) CR L

iL(t0)

−

+

v(t)

Using KCL, we have

v(t)

R
+

1

L

∫ t

t0

v(τ)dτ + iL(t0) + C
dv

dt
= iS(t)

Derivative with respect to t of both sides, we obtain

C
d2v

dt2
+

1

R

dv

dt
+

v(t)

L
=

diS

dt
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Series RLC Circuit

Basic series RLC circuits

−
+

vS(t)

Ri(t) +
vC(t0) −

C

L

Using KVL, we have

Ri(t) +
1

C

∫ t

t0

i(τ)dτ + vC(t0) + L
di

dt
= vS(t)

Derivative with respect to t of both sides, we obtain

L
d2i

dt2
+R

di

dt
+

i(t)

C
=

dvS

dt

Both series and parallel circuits lead to a second-order differential equation with
constant coefficients.
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General Form of 2nd Order Circuit Equation

The RLC circuits, both parallel and series, have the same form equations:

d2x(t)

dt2
+ a1

dx(t)

dt
+ a0x(t) = f(t)

If x(t) = xp(t), it is a solution of the general equation, and if x(t) = xc(t), it is a
solution to the homogeneous equation

d2x(t)

dt2
+ a1

dx(t)

dt
+ a0x(t) = 0

Then

x(t) = xp(t) + xc(t)

is the solution of the general equation.
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General Form of 2nd Order Circuit Equation

Using the fact that DC sources, i.e., f(t) = A will reach all voltages and currents of the
element is constant, i.e., xp(t) = constant. Then, by substituting this result back to the
equation,

d2xp(t)

dt2
+ a1

dxp(t)

dt
+ a2xp(t) = A

a0xp(t) = A

xp(t) =
A

a0

x(t) =
A

a0
+ xc(t)

The next step is to find the solution xc(t) to the homogeneous equation. Rewrite the
equation in the form

d2xc(t)

dt2
+ 2ζωn

dxc(t)

dt
+ ω2

nxc(t) = 0,

where a1 = 2ζωn and a0 = ω2
n .
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General Form of 2nd Order Circuit Equation

To satisfy the homogenous equation, the frist and second-order derivatives of xc(t)

must have the same form, hence

xc(t) = Keλt

and

λ2Keλt + 2ζωnλKeλt + ω2
nKeλt = 0

λ2 + 2ζωnλ+ ω2
n = 0 ( note Keλt ̸= 0 ∀t)

We call
▶ λ2 + 2ζωnλ+ ω2

n = 0 is called characteristic equation.
▶ ζ is called the damping ratio.
▶ ωn is referred to as the undamped natural frequency.
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General Form of 2nd Order Circuit Equation

λ2 + 2ζωnλ+ ω2
n = 0

λ =
−2ζωn ±

√
4ζ2ωn − 4ω2

n

2

= −ζωn ± ωn

√
ζ2 − 1

λ1 = −ζωn + ωn

√
ζ2 − 1, λ2 = −ζωn − ωn

√
ζ2 − 1

Both λi are the solution of the characteristic equation, then the complementary
solution of the general from differential equation is of the form

xc(t) = K1e
λ1t +K2e

λ2t,

and

xc(0) = K1 +K2,
dxc

dt

∣∣∣∣
t=0

= λ1K1 + λ2K2

xc(t) is an unforced response of the network (no input). There are three possible
cases.
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The Overdamped Circuit

Case 1 ζ > 1 The term
√

ζ2 − 1 is greater than 0. The natural frequencies λ1 and λ2

are real and unequal. We have

xc(t) = K1e
λ1t +K2e

λ2t

This case is called overdamped response.
Example: Find an expression for vC(t) valid for t > 0.

−
+

150 V

300 Ω

t = 0

+
vC
−

20 nF

iCiR

200 Ω5 mH

iL

At t < 0 :

vC(0−) = 150
200

300 + 200
= 60 V

iL(0
−) = −

150

500
= −0.3 A
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The Overdamped Circuit

+
vC
−

20 nF

iCiR

200 Ω5 mH

iL

At t > 0, using KCL:

iL + iR + C
dvC

dt
= 0

1

L

∫ t

t0

vC(τ)dτ +
vC

R
+ C

dvC

dt
= 0

d2vC

dt2
+

1

RC

dvC

dt
+

1

LC
vC(t) = 0

We have

2ζωn =
1

RC
= 2.5× 105, ωn =

√
1

LC
= 1× 105 rad/s

2ζωn = 2.5× 105, ⇒ ζ = 1.25

λ1,2 = −ζωn ± ωn

√
ζ2 − 1 = 1.25× 105 + 1× 105

√
1.252 − 1

= −5× 104,−2× 105

Then vC(t) = K1e−50000t +K2e−200000t V.
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The Overdamped Circuit

We have

vC(0−) = 60 = K1 +K2

From

iL + iR + C
dvC

dt
= 0

dvC

dt

∣∣∣∣
t=0−

= v̇C(0−) = −
iL(0

−)

C
−

vC(0−)

RC

= −
−0.3

20 nF
−

60

200× 20 nF
= 0

= −50000K1 − 200000K2

We have K1 = 80 and K2 = −20. So we obtain

vC(t) = 80e−50000t − 20e−200000t V
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The Overdamped Circuit

1 syms vc ( t ) t
2 R = 200 ; L = 5e − 3 ; C = 20e −9 ;
3 eqn = d i f f ( vc , t , 2 ) + ( 1 / ( R*C ) )* d i f f ( vc , t )

+ ( 1 / ( L*C ) )*vc ( t ) == 0 ;
4 Dvc = d i f f ( vc , t ) ;
5
6 cond1 = vc ( 0 ) == 60 ; cond2 = Dvc ( 0 ) == 0 ;
7 conds = [ cond1 ; cond2 ] ;
8 vc = dsolve ( eqn , conds ) ;

8 yout = f p l o t ( vc , [ 0 , 2e −4 ] , ' l inewidth ' , 2 )
;

9 t t = yout . XData ;
10 y1 = 80*exp ( −5e4* t t ) ;
11 y2 = −20*exp ( −2 e5* t t ) ;
12 hold on
13 p lot ( t t , y1 , ' r −− ' , t t , y2 , ' k−− ' , '

l inewidth ' , 1 )
14 g r id on ; hold o f f
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The Overdamped Circuit

In Simscape the switch is closed at t = 2× 10−4 sec.
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The underdamped Circuit

Case 2 ζ < 1 The term
√

ζ2 − 1 is less than 0. The roots of the characteristic
equation can be written as

λ = −ζωn ± ωn

√
ζ2 − 1 ζ2 − 1 is negative

= −ζωn ± ωn

√
(−1)(1− ζ2) = −ζωn ± jωn

√
1− ζ2 = −σ ± jω

This case is called underdamped response. We have

xc(t) = Ce−σt cos(ωt+ θ), σ = ζωn and ω = ωn

√
1− ζ2

complex conjugate roots

xc(t) = K1e
(−σ+jω)t +K2e

(−σ−jω)t

K1 =
C

2
ejθ, K2 =

C

2
e−jθ

xc(t) =
C

2
e−σt

(
ej(ωt+θ) + e−(jω+θ)

)
= Ce−σt cos(ωt+ θ) using Euler’s identity
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The underdamped Circuit

Determine iL(t) for the circuit.

3 A

t = 0

1
240

F
+

vC
−

iC
48 Ω

10 H

iL

100 Ω

iR
t = 0

At t < 0 , capacitor acts as an open circuit,
and inductor acts as a short circuit.

iL(0
−) = 3

(
100

100 + 48

)
= 2.027 A

vC(0−) = 48iL(0
−) = 97.30 V

At t > 0, the circuit is changed to⇒ 1
240

F
+

vC
−

iC

10 H

iL

100 Ω

iR
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The underdamped Circuit

Using KCL, we have

iC + iL + iR = 0

C
dvC

dt
+

1

L

∫ t

−∞
vC(τ)dτ +

vC

R
= 0

d2vC

dt2
+

1

RC

dvC

dt
+

1

LC
vC(t) = 0

Substuting all values, we have

d2vC

dt2
+ 2.4

dvC

dt
+ 24vC(t) = 0,

where

ωn =
√
24 = 4.899 rad/sec, 2ζωn = 2.4 ⇒ ζ = 0.245

λ = −ζωn ± jωn

√
1− ζ2 = −1.2± j4.75
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The underdamped Circuit

vC(t) = Ke−1.2t cos(4.75t+ θ)

vC(0−) = 97.30 = K cos(θ)

Since iC + iL + iR = 0, we have

dvC

dt

∣∣∣∣
t=0−

= −
iL(0

−)

C
−

vC(0−)

RC
= −486.48− 233.5200 = −720

Then,

dvC

dt

∣∣∣∣
t=0−

= v̇C(0−) = −720 = −1.2K cos(θ)− 4.75K sin(θ)

K sin(θ) = (−720 + 1.2(97.3))/(−4.75) = 127

K =
√

97.32 + 1272 = 160

θ = tan−1 127

97.30
= 52.54◦

vC(t) = 160e−1.2t cos(4.75t+ 52.54◦) 17 / 32



The underdamped Circuit

Note that,

iL(t) = −
1

240

dvC

dt
−

vC

100

= −
1

240

(
−192e−1.2t cos(4.75t+ 52.54◦)− 760e−1.2t sin(4.75t+ 52.54)

)
− 1.6e−1.2t cos(4.75t+ 52.54◦)

= −0.8e−1.2t cos(4.75t+ 52.54◦) + 3.167e−1.2t sin(4.75t+ 52.54◦)

= −0.8e−1.2t (cos(4.75t) cos(52.54◦)− sin(4.75t) sin(52.54◦))

+ 3.167e−1.2t (sin(4.75t) cos(52.54◦) + sin(52.54◦) cos(4.75t))

= e−1.2t (−0.4866 cos(4.75t) + 0.6350 sin(4.75t))

+ e−1.2t (1.9262 sin(4.7t) + 2.5139 cos(4.75t))

= e−1.2t (2.0273 cos(4.75t) + 2.5612 sin(4.75t))

= 3.266e−1.2t cos(4.75t− 51.34◦)
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The underdamped Circuit

1 2 3 4 5

-3.266

-2

2

3.266

0 t(s)

iL(t)(A)
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The critically damped Circuit

Case 3 ζ = 1 The term
√

ζ2 − 1 is 0. The roots of the characteristic equation are
repeated as

λ1 = λ2 = −ζωn

This case is called critically damped response. We have

xc(t) = B1e
λ1t +B2te

λ2t.

Proof∗

Consider the following case

d2x(t)

dt2
+ 2α

dx(t)

dt
+ α2x(t) = 0

Since the roots are equal to α, the homogenous solution could be (wrong!)

xc(t) = K1e
−αt +K2e

−αt = K3e
−αt
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The critically damped Circuit

Proof∗

One know solution is

xc1(t) = K3e
−αt and xc2(t) = xc1(t)v(t) = K3e

−αtv(t)

The equation becomes

d2

dt2
[K3e

−αtv(t)] + 2α
d

dt
[K3e

−αtv(t)] + α2K3e
−αtv(t) = 0

Evaluating the derivatives, we obtain

d

dt
[K3e

−αtv(t)] = −K3αe
−αtv(t) +K3e

−αt dv(t)

dt

d2

dt
[K3e

−αtv(t)] = K3α
2e−αtv(t)− 2K3αe

−αt dv(t)

dt
+K3e

−αt d
2v(t)

dt
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The critically damped Circuit

Proof∗

Substituting these expressions into the preceding equation yields

K3e
−αt d

2v(t)

dt2
= 0

Therefore,

d2v(t)

dt2
= 0 ⇒ v(t) = A1 +A2t

Therefore, the general solution is

xc2(t) = xc1(t)v(t) = K3e
−αt[A1 +A2t] = B1e

λt +B2te
λt

22 / 32



The critically damped Circuit

Select a value for R1 such that the circuit in Fig. below will be characterized by a
critically damped response for t > 0 , and a value for R2 such that v(0−) = 100 V.
Fine v(t) at t = 1 ms.

0.5 A

t = 0

1 µF
+
v
−

R2

4 H

t = 0

R1

At t < 0 , capacitor acts as an open circuit,
and inductor acts as a short circuit.

iL(0
−) = 0.5

(
R1

R1 +R2

)
A

v(0−) = 0.5

(
R1R2

R1 +R2

)
V

At t > 0, the circuit is changed to⇒
1 µF

+
vC
−

iC

4 H

iL

R1 Ω

iR
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The critically damped Circuit

Using KCL, we have

iC + iL + iR = 0

d2vC

dt2
+

1

R1C

dvC

dt
+

1

LC
vc(t) = 0

To have a critically damped response, we have to have (λ2 + 2ζωnλ+ ω2
n = 0, ζ = 1)

1

2R1C
=

√
1

LC
= 500

R1 =
1

10× 103(1× 10−6)
= 1000 Ω

We need v(0−) = 100 V, so

v(0−) = 0.5

(
R1R2

R1 +R2

)
= 100 =⇒ R2 = 250 Ω

iL(0
−) = 0.4 A
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The critically damped Circuit

Note we have λ = −1
2R1C

= −500, then

v(t) = B1e
−500t +B2te

−500t

v(0−) = 100 = B1

From iC + iL + iR = 0, we have

dv

dt

∣∣∣∣
t=0−

= v̇C(0−) =
iL(0

−)

C
−

vC(0−)

R1C
= −5× 105 V/s

From dv

dt
= −5× 104e−500t +B2e

−500t − 500B2te
−500t

dv

dt

∣∣∣∣
t=0−

= v̇C(0−) = −5× 105 = −5× 104 +B2

B2 = −4.5× 105

Then

v(t) = 100e−500t − 4.5× 105te−500t and v(t = 1× 10−3) = −212.2856 V.
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RLC Circuit: Hard Example

The switch in the network in Fig. below moves from position 1 to position 2 at t = 0.
Compute i0(t) for t > 0 and use this current to determine vo(t) for t > 0.

−
+

24 V

6 Ω 1

2 H

io(t)

−
+

4 V

1
36

F

2

−
+

12 V

18 Ω

+

−

vo(t)

t = 0

At t < 0, we have

iL(0
−) = io(0

−) =
24− 12

24
= 0.5 A

vC(0−) = 0 V

vo(0
−) = 0.5(18) = 9 + 12 = 21 V

At t > 0

2 H

io(t)

−
+

4 V

1
36

F

−
+

12 V

18 Ω

+

−

vo(t)io(t)

Using KVL, we have

−4 + 36

∫ t

−∞
io(τ)dτ + 2

dio

dt
+ 18io(t) + 12 = 0

d2io

dt2
+ 9

dio

dt
+ 18io(t) = 0
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RLC Circuit: Hard Example

At the steady-state, the capacitor acts as an open circuit. Then iop(t) (particular
solution) is zero, and iop(t) = 0. Considering the transient response, we obtain

d2io

dt2
+ 9

dio

dt
+ 18io(t) = 0

λ1,2 = −
9

2
±

√
81− 72

2
= −

9

2
±

3

2
= −3,−6

We have a complementary solution

ioc(t) = K1e
−3t +K2e

−6t ⇒ ioc(0
−) = 0.5 = K1 +K2

Since dio
dt

∣∣∣
t=0−

= −9io(0−)− vC(0−)
2

− 4 = − 17
2
, then

−
17

2
= −3K1 − 6K2 ⇒ K1 = −

11

6
, K2 =

14

6

ioc(t) = io(t) = −
11

6
e−3t +

14

6
e−6t A

vo(t) = 12 + 18io(t) = 12− 33e−3t + 42e−6t V
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RLC Circuit: Hard Example (Matlab Plot)

0 0.5 1 1.5 2 2.5 3

-0.5

0

0.5

0 0.5 1 1.5 2 2.5 3

5

10

15

20
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RLC Circuit: Hard Example II

−
+

100 V

100 Ω 20 H

1
120

F
+
vC(t)
−

400 Ω

t = 0

Find vC(t) at time t > 0.

At t = 0− , we have

iL(0
−) =

100

100 + 400
= 0.2 A, vC(0−) =

100(400)

100 + 400
= 80 V

−
+

100 V

100 Ω 20 H

1
120

F
+
vC(t)
−

i(t)

The circuit at time t > 0.

Ri(t) + L
di

dt
+ vC(t) = 100, iC(t) = C

dvC

dt

d2vC

dt2
+

R

L

dvC

dt
+

1

LC
vC(t) =

100

LC

d2vC

dt2
+ 5

dvC

dt
+ 6vC(t) = 600
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RLC Circuit: Hard Example II

The particular solution is

6vCp(t) = 600 =⇒ vCp(t) = 100 V

The characteristic solution is

λ2 + 5λ+ 6 = 0 =⇒ λ1,2 = −2,−3

Then the complementary solution is

vCc(t) = K1e
−2t +K2e

−3t and vC(t) = 100 +K1e
−2t +K2e

−3t V

We have

vC(0−) = 80 V and iC(0−) = C
dvC

dt

∣∣∣∣
0−

=⇒ v̇C(0−) =
0.2

1/120
= 24 V
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RLC Circuit: Hard Example II

Thus

100 +K1 +K2 = 80 and − 2K1 − 3K2 = 24

K1 = −36, K2 = 16

We obtain

vC(t) = 100− 36e−2t + 16e−3t V
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