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Learning Outcomes

Students should be able to:
▶ Calculate the initial values for inductor currents and capacitor voltages in the

transient circuits.
▶ Determine the voltages and currents in the first-order transient circuits.
▶ Use Graphical and Symbolic tools to plot and check the calculation results.l
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RC Circuits application: Camera’s Flash Circuit
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RC Circuits application: Discharge

vs
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C
+

vC(t)
−
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Discharge period
td

KCL for the circuit

C
dvC

dt
+

vC(t)

R
= 0

dvC

dt
+

1

RC
vC(t) = 0

vC(t) = V0e
− 1

RC
t

▶ The solution function is a decaying exponential.
▶ The rate at which it decays is a function of the values of R and C .
▶ The product RC is a very important parameter, called time constant τ .
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First-Order Circuit: General Form

A first-order differential equation:

dx

dt
+ ax(t) = f(t)

There are two solutions for this problem:
▶ x(t) = xp(t) is any solution to the general equation. xp(t) is called the

particular integral solution, or forced response.
▶ x(t) = xc(t) is any solution to the homogeneous equation

dx

dt
+ ax(t) = 0.

xc(t) is called the complementary solution, or natural response.
If we consider the situation in which f(t) = A (some constant). The general solution
x(t) consists of two parts that are obtained by solving the two equations

dxp

dt
+ axp(t) = A

dxc

dt
+ axc(t) = 0 5



First-Order Circuit: General Form

Since

dxp

dt
+ axp(t) = A,

It is reasonable to assume that the solution xp(t) must also be a constant. We have

xp(t) = K1 ⇒ K1 =
A

a

From

dxc

dt
+ axc(t) = 0

We have

1

xc(t)
dxc = −a ⇒ lnxc(t) = −at+ C

xc(t) = K2e
−at

Thus x(t) = xp(t) + xc(t) =
A
a
+K2e−at . In general case, x(t) = K1 +K2e

− 1
τ
t .

6



First-Order Circuit: General Form

Consider the general solution

x(t) = K1 +K2e
− 1

τ
t

Each part of the equation has a names that are commonly employed in electrical
engineering.

▶ Term K1 is referred to as the steady-state solution: the value of the variable
x(t) as t → ∞, the second term become zero.

▶ The constant τ is called the time constant of the circuit. The second term is a
decaying exponential.

K2e
− 1

τ
t =

K2, τ > 0 and t = 0

0, τ > 0 and t = ∞

▶ The rate at which the exponential decays is determined by the time constant τ .
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First-Order Circuit: General Form

τ 2τ 3τ 4τ
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▶ The value of xc(t) has fallen from K2 to a value of 0.368K2 in one time
constant, a drop of 63.2%.

▶ In two time constants the value of xc(t) has fallen to 0.135K2 , a drop of 63.2%
from the value at time t = τ , and the final value of the curve is closed by 63.2%
each time constant.

▶ After five time constants, xc(t) = 0.0067K2 , which is less than 1%

▶ The circuit with a small-time constant has a fast response, and a large time
constant circuit has a slow response. 8



Analysis Techniques RC Circuit: Differential Equations

−
+

−
Vs

+

t = 0

R

C
+

vC(t)
−

Using KCL for t > 0 is

C
dvC

dt
+

vC(t)− Vs

R
= 0

dvC

dt
+

1

RC
vC(t) =

Vs

RC

From the previous section, we have

vC(t) = K1 +K2e
− 1

τ
t

Substituting the solution into the differential equation yields

−
K2

τ
e−

1
τ
t +

K1

RC
+

K2

RC
e−

1
τ
t =

Vs

RC

Equating the constant and exponential terms, we obtain

K1 = Vs and τ = RC
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Analysis Techniques RC Circuit: Differential Equations

Therefore

vC(t) = Vs +K2e
− 1

RC
t

To find the value of K2 , we need to know the initial condition of vC(0−). Here the
capacitor is uncharged at t < 0, then

0 = Vs +K2 ⇒ K2 = −Vs

Hence, the complete solution for the voltage vC(t) is

vC(t) = Vs(1− e
1

RC
t).

Since τ = RC we can change the time constant by changing the value of RC .
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Analysis Techniques RC Circuit: Example

2 Ω

4 Ω

+
vC(t)

−
10 µF

t = 0

−
+

9 V

At t < 0 , we have vC(0−) = 9 V.

2 Ω

4 Ω

+
vC(t)

−
10 µF

We have

C
dvC

dt
+

vC(t)

R
= 0

vC(t) = vC(0−)e−
1

RC
t

= 9e
− 1

60×10−6 t V

Note: The differential equation of this question is

dvC

dt
+

1

(6)(10× 10−6)
vC(t) = 0

We can solve this problem by using Symbolic computational program. 11



Analysis Techniques RC Circuit: Example (Matlab)

1 syms vc ( t ) t
2 R = 6 ; C = 10e −6 ;
3 eqn = d i f f ( vc , t ) + ( 1 / ( R*C ) )*vc ( t ) == 0 ;
4
5 vc = dsolve ( eqn , vc ( 0 ) == 9) ;
6 f p l o t ( vc , [ 0 , 0 . 6 e − 3 ] )
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Analysis Techniques RC Circuit: Example (Simscape)

,-------

-<14----------1 L 
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Consider vC(t) after the fully charge period from t > 0.3 ms.
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Analysis Techniques RL Circuit: Differential Equation

Determine vR(t) of the circuit below at
time t > 0.

−
+

−
Vs

+

t = 0 R

+vR(t)−

L

Using KVL for t > 0, we have

L
diL

dt
+RiL(t) = Vs

diL

dt
+

R

L
iL(t) =

Vs

L

From the standard from, we have

iL(t) = K1 +K2e
− 1

τ
t

Substituting the solution into the differential equation yields

−
K2

τ
e−

1
τ
t +

R

L
K1 +

R

L
K2e

− 1
τ
t =

Vs

L

Equating the constant and exponential terms, we obtain

K1 =
Vs

R
and τ =

L

R 14



Analysis Techniques RL Circuit: Differential Equation

Therefore

iL(t) =
Vs

R
+K2e

−R
L

t.

To find the value of K2 , we need to know the initial condition of iL(0−). Since there
are no initial current in the inductor at t < 0, then

0 =
Vs

R
+K2 ⇒ K2 = −

Vs

R

Hence, the complete solution for the current iL(t) is

iL(t) =
Vs

R

(
1− e−

R
L

t
)

vR(t) = RiL(t) = Vs(1− e−
R
L

t).

Since τ = L
R
we can change the time constant by changing the value of R or L.
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Analysis Techniques RL Circuit: Example

−
+

−

VS1

+

12 V

R1

2 Ω L

2 H

t = 0

R2 2 Ω

−
+

4 V VS2

R3 2 Ω

+

−

vo(t)

The switch in the network opens at t = 0.
Let us find the output voltage vo(t) for
t > 0.

The circuit at t < 0

−
+

−

VS1

+

12 V

R1

2 Ω iL(0
−)

R2 2 Ω

−
+

4 V VS2

R3 2 Ω

A

There are several ways to find iL(0
−) .

Here we use KCL.

vA − 12

2
+

vA + 4

2
+

vA

2
= 0

3

2
vA = 4 ⇒ vA =

8

3
V

iL(0
−) =

4

3
A

16



Analysis Techniques RL Circuit: Example

The circuit at t > 0

−
+

−

VS1

+

12 V

R1

2 Ω iL(t)
L

2 H

R3 2 Ω

diL

dt
+ 2iL(t) = 6

iL(t) = K1 +K2e
−R

L
t

= K1 +K2e
−2t

K1 = 3 and τ = 0.5 s

Since iL(0
−) = 4

3
A, we have

4

3
= 3 +K2 ⇒ K2 = −

5

3

Thus,

iL(t) = 3−
5

3
e−2t A ⇒ vo(t) = 6−

10

3
e−2t V
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Analysis Techniques RL Circuit: Example (Matlab)

1 syms i L ( t ) t
2 R = 4 ; L = 2 ;
3 eqn = d i f f ( iL , t ) + (R/L )* i L ( t ) == 12/ L ;
4
5 i L = dsolve ( eqn , i L ( 0 ) == 4/3) ;
6 vo = 2* i L
7 yout = f p l o t ( vo , [ 0 , 7 ] )

8 dt = yout . XData ( 2 ) − yout . XData ( 1 ) ;
9 t x = − 1 : dt : 0 ;
10 t t = [ t x yout . XData ] ;
11 yy = [ yout . YData ( 1 ) *ones ( s i z e ( t x ) ) yout .

YData ] ;
12 p lo t ( t t , yy , ’ l inewidth ’ , 2 )
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vo(t) = 6−
10

3
e−2t
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Analysis Techniques RL Circuit: Example (Simscape)

Consider vo(t) from t > 3 s.
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Analysis Techniques RC and RL Circuits

▶ We will not consider the step-by-step method. It is no benefit.
▶ To use the step-by-step method, we need to store more formulas, which are not

necessary.
▶ Simple using KVL and KCL analysis are more than enough.
▶ Just keep in your mind that

vC(0−) = vC(0+) = vC(0)

iL(0
−) = iL(0

+) = iL(0)

This phenomenon is from the physical behavior of inductors and capacitors.
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Analysis Techniques RC Circuit: (Hard) Example

−
+

36 V

2 kΩ 6 kΩi(t) 4 kΩ

−
+

12 V100µF
+
vC(t)
−

t = 0

Consider the circuit shown in Fig.
The circuit is in steady state prior
to time t = 0, when the switch is
closed. Let us calculate the
current i(t) for t > 0.

Firstly, we need to find i(0−) and vC(0−) as follow:

−
+

36 V

2 kΩ 6 kΩi(0−) 4 kΩ

−
+

12 V

+

vC(0−)

−

Find i(0−):

i(0−) =
36− 12

12× 103
= 2 mA

Find vC(0−)

−36 + 2× 103(2× 10−3) + vC(0−) = 0

vC(0−) = 32 V
21



Analysis Techniques RC Circuit: (Hard) Example

The circuit at t > 0:

−
+

36 V

2 kΩ 6 kΩi(t)

100µF
+
vC(t)
−

A

Using KCL

vC − 36

2× 103
+ C

dvC

dt
+

vC

6× 103
= 0

100× 10−6 dvC

dt
+

4vC(t)

6× 103
=

108

6× 103

dvC

dt
+

20

3
vC(t) = 180

From the standard from we have

vC(t) = K1 +K2e
− 20

3
t V, K1 = 27, τ =

3

20
s

vC(t) = 27 +K2e
− 20

3
t

32 = 27 +K2 ⇒ K2 = 5

Thus

i(t) =
1

6× 103
vC(t) =

9

2
+

5

6
e−

20
3

t mA
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Analysis Techniques RC Circuit: (Hard) Example

0.1 0.2 0.3 0.4

2

9
2

16
3

0

τ = 0.5 s
τ = 4 s

t(s)

i(t)(mA)
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Analysis Techniques RC Circuit: (Hard) Example II

−
+

−

VS1

+

24 V

+
v(t)

−
4 Ω

12 Ω

4 H 1 Ω

2 Ωt = 06 Ω

The circuit shown in Fig is
assumed to have been in a
steady-state condition prior to
switch closure at t = 0. We wish
to calculate the voltage v(t) for
t > 0.

We need to start to find iL(0
−) and v(0−).

−
+

−

VS1

+

24 V

+
v(t)

−
4 Ω

12 Ω

iL(0
−) 1 Ω

2 Ω6 Ω

A

vA(0−) =
24(2)

2 + 4
= 8 V

iL(0
−) = 4

(
6

6 + 3

)
=

8

3
A

v(0−) =
24(4)

2 + 4
= 16 V
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Analysis Techniques RC Circuit: (Hard) Example II

The circuit at t > 0:

−
+

−

VS1

+

24 V

+
v(t)

−
4 Ω

12 Ω

4 H
iL(t)

6 Ω

A

Find iL(t) as follow:

vA − 24

4
+

vA

6
+ iL(t) +

vA

12
= 0

vA + 2iL(t) = 12

diL

dt
+

1

2
iL(t) = 3, vA = L

diL

dt

From the standard from we have

iL(t) = K1 +K2e
− 1

2
t, K1 = 6, τ = 2 s

iL(t) = 6 +K2e
− 1

2
t

8

3
= 6 +K2 ⇒ K2 = −

10

3

iL(t) = 6−
10

3
e−

1
2
t A
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Analysis Techniques RC Circuit: (Hard) Example II

Find v(t)

−
+

24 V

+
v(t)

−
4 Ω

4 H

iL(t)

4 Ω

A

By using KVL:

−24 + v(t) + vA = 0

v(t) = 24− vA = 24− 4
diL

dt

v(t) = 24−
20

3
e−

1
2
t V

Since

di

dt
=

d

dt

(
6−

10

3
e−

1
2
t

)
=

5

3
e−

1
2
t

vA(t) = vL(t) = L
diL

dt
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Analysis Techniques RC Circuit: (Hard) Example II

2 4 6 8

5

10

16

17.33

24

0 t(s)

v(t)(V)

27



Analysis Techniques RC Circuit: (Hard) Example III

−
+

36 V

2 Ω

−
+

12 V

3 H

6 Ω

+

vo(t)

−

−
+

2iA

4 Ω

iA

t = 0

1

2

The circuit shown in Fig has
reached steady state with the
switch in position 1. At time t = 0

the switch moves from position 1
to position 2. We want to calculate
vo(t) for t > 0.

We need to start to find iL(0
−) and vo(0−).

−
+

12 V

iL(0
−)

6 Ω

+

vo(t)

−

−
+

2iA

4 Ω

iA

iA =
12

4
= 3 A

vo(0
−)− 2(3) = 12

vo(0
−) = 18 V

iL(0
−) =

12 + 2(3)

6
= 3 A
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Analysis Techniques RC Circuit: (Hard) Example III

The circuit at t > 0:

−
+

36 V

2 Ω 3 H
iL

6 Ω

+

vo(t)

−

−
+

2iA

4 Ω

iA

i1 iL

Find iL(t) as follow:

−36 + 2i1 + 4(i1 − iL) = 0

i1 = 6 +
2

3
iL

iA = 6−
1

3
iL

4(iL − i1) + L
diL

dt
+ 6iL − 2iA = 0

diL

dt
+

8

3
iL = 12

From the standard from we have

iL(t) = K1 +K2e
− 8

3
t, K1 =

9

2
, τ =

3

8
s

iL(t) =
9

2
+K2e

− 8
3
t

3 =
9

2
+K2 ⇒ K2 = −

3

2

iL(t) =
9

2
−

3

2
e−

8
3
t A ⇒ vo(t) = 6iL(t) = 27− 9e−

8
3
t V
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Pulse Response

▶ When a voltage or current source in a circuit is suddenly applied, the voltages or
currents in the circuit are forced to change abruptly.

▶ A forcing function whose value changes in a discontinuous manner or has a
discontinuous derivative is called a singular function.

▶ There are two important singular functions in circuit analysis: the unit step
impulse function and the unit step function.

▶ The unit step function is defined as

1(t) =

0, t < 0

1, t ≥ 0
, 1(t− t0) =

0, t < t0

1, t ≥ t0

A

0

A1(t)

t(s)

1(t)

t0

A

0

A1(t− t0)

t(s)

1(t− t0)
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Pulse Response

▶ Pulse function

f(t) = A [1(t)− 1(t− t0)]
t0

−A

A

0

−A1(t− t0)

A1(t)

t(s)

f(t)
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Analysis Techniques RC Circuit: Pulse Example

−
+

v(t)

6 kΩ 4 kΩ

8 kΩ

+

vo(t)

−

+
vC(t)
−

100µF

iC(t)

A

0.3

9

0 t(s)

v(t)(V)

Determine the expression for the voltage vo(t).
Note: vC(0−) = vo(0−) = 0 V

Use KCL at point A, we have

vC − 9

6 kΩ
+ iC(t) +

vC

12 kΩ
= 0

iC(t) = C
dvC

dt
dvC

dt
+

5

2
vC(t) = 15
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Analysis Techniques RC Circuit: Pulse Example

dvC

dt
+

5

2
vC(t) = 15 ⇒ vC(t) = K1 +K2e

− 1
τ
t

K1 =
30

5
= 6, τ =

2

5

vC(t) = 6 +K2e
− 5

2
t ⇒ vC(0−) = 0 ⇒ K2 = −6

Thus,

vC(t) = 6
(
1− e−

5
2
t
)

By using voltage divider technique, we have

vo(t) =
2

3
vC(t) = 4

(
1− e−

5
2
t
)

At t = 0.3, we obtain

vC(0.3) = 6
(
1− e−

5
2
(0.3)

)
= 3.16 and vo(0.3) = 3.16

2

3
= 2.11 V 33



Analysis Techniques RC Circuit: Pulse Example

After t > 0.3,

6 kΩ 4 kΩ

8 kΩ

+

vo(t)

−

+
vC(t)
−

100µF

iC(t)

A

vC(0.3) = 3.16 V

vo(0.3) = 2.11 V

vC(t)

6 kΩ
+ iC(t) +

vC(t)

12 kΩ
= 0

dvC

dt
+

5

2
vC(t) = 0, vC(t) = K1 +K2e

− 5
2
(t−0.3)

K1 = 0, K2 = 3.16

vC(t− 0.3) = 3.16e−
5
2
(t−0.3)

vo(t− 0.3) =
2

3
vC(t− 0.3) = 2.11e−

5
2
(t−0.3) V

vo(t) =


0, t ≤ 0

4
(
1− e−

5
2
t
)
, 0 ≤ t < 0.3

2.11e−
5
2
(t−0.3), t ≥ 0.3
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Analysis Techniques RC Circuit: Pulse Example

0.3

2.11

4

0 t(s)

v(t)(V)
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Analysis Techniques RC Circuit: Pulse Example

36
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