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Introduction

This section introduces two new passive circuit elements:
▶ Capacitor and Inductor.
▶ They can both store and deliver finite amounts of energy.
▶ They are not ideal sources since they cannot sustain a finite average power flow

over an infinite time interval.
▶ They are classed as linear elements.
▶ The current-voltage relationships for them are time-dependent.
▶ They use in a wide range of modern circuit applications.
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Capacitor

The capacitance of two parallel plates of
area A, separated by distance d is

C =
ε0A

d
,

where ε0 , the permitivity of free space, is
8.85× 10−12 F/m.

If d = 1.016× 10−4 m the thickness of none sheet of oil-impregnated paper, to make
a 100 F capacitance, then

100 F = 8.85× 10−12A

1.016× 10−4

A = 1.148× 109m2,

which is A ≈ 7.175× 105 rai
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Capacitor: Ideal Capacitor Model

▶ The capacitor is a passive circuit element. We define capacitance C by the
voltage-current relationship defined by

i(t) = C
dv

dt
,

where v and i are voltage and current.

i
+

v
−

Electrical symbol

▶ Capacitance is measured in coulombs per volt or farads. The unit farad (F) is
name after Michael Faraday.

▶ Capacitors may be fixed or variable and typically range from thousands of
microfarads (µF) to a few picofarads (pF).
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Capacitor: Ideal Capacitor Model

−
+

−
vi(t)

+ iC(t)
+

vC(t)
−

Determine the current iC(t) flowing
through the capacitor if C = 2 F.

▶ vi(t) = 5 V

▶ vi(t) = cos(5t) V

▶ vi(t) = 2e−5t V
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Capacitor: Ideal Capacitor Model

The voltage across a 5 µF capacitor has the waveform below. Determine the current
wave form.

6 8

24

0 t(ms)

v(t)(V )

Note that

v(t) =



0 V , t < 0 ms
24

6×10−3 t V , 0 ≤ t ≤ 6 ms
−24

2×10−3 t+ 96 V , 6 ≤ t < 8 ms
0 V , 8 ms ≤ t
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−60

20

0
t(ms)

i(t)(mA)

i(t) = C
dv(t)

dt
=


20 mA , 0 ≤ t ≤ 6 ms
−60 mA , 6 ≤ t < 8 ms
0 mA , 8 ms ≥ t

6



Capacitor: Integral Voltage-Current Relationships

▶ The capacitor voltage may be expressed in terms of the current by

i(t) = C
dv

dt
⇒ dv =

1

C
i(t)dt,

then we have

v(t) =
1

C

∫ t

t0

i(τ)dτ + v(t0) ⇒ v(t) =
1

C

∫ t

−∞
i(τ)dτ

▶ Since the integral of the current over any time interval is the corresponding
charge accumulated on the capacitor plate into which the current is flowing, we
can define capacitance as

q(t) = Cv(t),

where q(t) and v(t) represent instantanceous values of the charge on either
plate and the voltage between the plates.
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Capacitor: Integral Voltage-Current Relationships

Find the capacitor voltage that is associated with the current shown graphically in the
plot below. The value of the capacitor is 5 µF.

-1 2 4

20

0 t(ms)

i(t)(mA)

-1 2 4

8

0 t(ms)

v(t)(V )

Using

v(t) =
1

C

∫ t

t0

i(τ)dτ + v(t0), v(t0) = v(−∞) = v(0) = 0

v(t) =
1

5× 10−6

∫ t

0
20× 10−3dτ + 0

=

4000t V, 0 ≤ t ≤ 2 ms
8 V, t ≥ 2 ms
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Capacitor: Energy Storage

The energy stored in the capacitor can be derived from the power that is delivered to
the element. The power is given by

p(t) = v(t)i(t) = Cv(t)
dv

dt

The energy stored in the electric field is

wC(t) =

∫ t

t0

p(τ)dτ = C

∫ t

t0

v(τ)
d(v(τ))

dτ
dτ

= C

∫ v(t)

v(t0)
v(τ)dv(τ) =

1

2
C
[
v2(t)− v2(t0)

]
=

1

2
Cv2(t) Joul, if v(t0) = 0 V

Since q = Cv, we also have

wC(t) =
1

2

q2(t)

C
Joul
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Capacitor: Energy Storage

100 sin 2πt V 1 MΩ

iR

20 µF

iC

Find the maximum energy stored in the
capacitor and the energy dissipated in the
resistor over the interval 0 < t < 0.5 s.

The energy stored in the capacitor is

wC(t) =
1

2
Cv2(t) = 0.1 sin2 2πt J

and iR = v(t)/R = 10−4 sin 2πt A and pR = i2RR = 10−2 sin2 2πt W, so the energy
dissipated in the resistor is

wR =

∫ 0.5

0
pRdt =

∫ 0.5

0
10−2 sin2 2πtdt

=
10−2

2

∫ 0.5

0
(1− cos 4πt) dt =

10−2

2
(0.5− 0) = 2.5 mJ
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Capacitor: Energy Storage

0.1 0.2 0.25 0.3 0.4 0.5

0.02

0.04

0.06

0.08

0.10

0 t(s)

wC(t) = 0.1 sin2 2πt (J)

The energy stored in the capacitor increases from zero at t = 0 to a maximum of 100
mJ at t = 0.25 s and then decreases to zero in another t = 0.25 s. Thus, wCmax = 100

mJ.
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Capacitor: Important Characteristics of an Ideal Capacitor

▶ There is no current through a capacitor if the voltage across it is not changing
with time. A capacitor is therefore and open circuit to DC.

▶ A finite amount of energy can be stored in a capacitor even if the current
through the capacitor is zero, such as when the voltage across it is constant.

▶ It is impossible to change the voltage across a capacitor by a finite amount is
zero time, as this requires an infinite current through the capacitor. ( A capacitor
resists an abrupt change in the voltage across it in a manner analogous to the
way a spring sesists and abrupt change in its displacement.)

▶ A capacitor never dissipates energy, but only stores it. Although this is true for
the mathematical model, it is not true for a physical capacitor due to finite
resistances associated with the dielectric as well as the packaging.
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Inductor

The electric current flowing through a
conductor generates a magnetic field
surrounding it. The magnetic flux linkage φ

generated by a given current i(t) depends
on the geometric shape of the circuit.
Their ratio defines the inductance L, Thus

L =
dφ

di

▶ An inductor or “coil” that has the form of a long helix of very small pitch is
found to have and inductance of µN2A/s where A is the cross-sectional area, s
is the axial length of the helix, N is the number of complete turns of wire, and µ

is a constant of the material inside the helix, called permeability.
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Inductor: Ideal Inductor Model

▶ The inductor is a passive circuit element. We define inductance L by the
voltage-current relationship defined by

v(t) = L
di

dt
,

where v and i are voltage and current.

i
+

v
−

Electrical symbol

▶ Inductance is measured in volt-second per ampere. The unit henry (H) is name
after 19th century American scientist Joseph Henry.

14



Inductor: Ideal Inductor Model

Given the waveform of the current in a 3 H inductor as shown in the plot, determine
the inductor voltage and sketch it.

-1 1 2 3

1

0 t(s)

i(t)(A)

Note that

i(t) =


t+ 1 A ,−1 ≤ t ≤ 0 s
1 A , 0 ≤ t < 2 s
−t+ 3 A , 2 ≤ t < 3 s

-1 1 2 3

-3

0

3

t(s)

v(t)(V )

v(t) = L
di(t)

dt
=


3 A ,−1 ≤ t ≤ 0 s
0 A , 0 ≤ t < 2 s
−3 A , 2 ≤ t < 3 s
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Inductor: Integral Voltage-Current Relationships

▶ The inductor current can be expressed in terms of the voltage by

v(t) = L
di

dt
⇒ di =

1

L

∫ t

t0

v(τ)dτ + i(t0) ⇒ i(t) =
1

L

∫ t

−∞
v(τ)dτ

▶ The voltage across a 2 H inductor is known to be 6 cos 5t V. Determine the
resulting inductor current if i(t = −π/2) = 1 A.

i(t) =
1

2

∫ t

t0

6 cos 5τdτ + i(t0)

=
1

2

(
6

5

)
sin 5t−

1

2

(
6

5

)
sin 5t0 + i(t0)

= 0.6 sin 5t−0.6 sin 5t0 + i(t0)︸ ︷︷ ︸
constant

= 0.6 sin 5t+ k

We have

i

(
−π

2

)
= 1 = 0.6 sin

(
−5

π

2

)
+ k
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Inductor: Integral Voltage-Current Relationships

k = 1 + 0.6 = 1.6,

then

i(t) = 0.6 sin 5t+ 1.6 A

▶ Note: we cannot use

i(t) =
1

L

∫ t

−∞
v(τ)dτ

because 0.6 sin(±∞) is indeterminate. We don’t know what is i(t0).
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Inductor: Energy Storage

The energy stored in the inductor can be derived from the power that is delivered to
the element. The power is given by

p(t) = v(t)i(t) = Li(t)
di

dt

The energy stored in the magnetic field is

wL(t) =

∫ t

t0

p(τ)dτ = L

∫ t

t0

i(τ)
d(i(τ))

dτ
dτ

= L

∫ i(t)

i(t0)
i(τ)di(τ) =

1

2
L[i2(t)− i2(t0)]

=
1

2
Li2(t) Joul , if i(t0) = 0
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Inductor: Energy Storage

Find the maximum energy stored in the inductor, and calculate how much energy is
dissipated in the resistor in the time during which the energy is being stored in, and
then recovered from, the inductor.

12 sin πt
6

A

0.1 Ω

+ vR −i

+

vL

−
3 H

The energy stored in the inductor is

wL =
1

2
Li2 = 216 sin2

πt

6
J

The peak of the sine wave is at t = 3 sec, to get 216 sin2 π
2
. Thus the maximum energy

stored in the inductor is 216 J.
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Inductor: Energy Storage

-1 1 2 3 4 5 6 7

216

0 t(s)

wL(t)(J) From wL(t) , we can see that we store and
remove the energy in 6 seconds. The power
dissipated in the resistor is easily found as

pR = i2R = 14.4 sin2
πt

6

and the energy converted into heat in the resistor within this 6 second interval is

wR =

∫ 6

0
pRdt =

∫ 6

0
14.4 sin2

π

6
tdt

=

∫ 6

0
14.4

(
1

2

)(
1− cos

π

3
t
)
dt = 43.2 J

The 43.2 J is 20% of the maximum stored energy (216 J), which is big because of the
large inductance. For coil having an inductance of about 100 µH, we might expect a
figure closer to 2 or 3 percent.
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Inductor: Important Characteristics of an Ideal Inductor

▶ There is no voltage across an inductor if the current through it is not changing
with time. An inductor is therefore a short circuit to DC.

▶ A finite amount of energy can be stored in an inductor even if the voltage across
the inductor is zero, such as when the current through it is constant.

▶ It is impossible to change the current through an inductor by a finite amount in
zero time, for this requires an infinite voltage across the inductor. ( An inductor
resists an abrupt change in the current through it in a manner analogous to the
way a mass resists an abrupt change in its velocity.)

▶ The inductor never dissipates energy, but only stores it. Although this is true for
the mathematical model, it is not true for a physical inductor due to series
resistances.
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Energy Storage

Find the total energy stored in the circuit.

−
+

−
9 V

+

6 Ω L1 = 2 mH 3 Ω L2 = 4 mH

6 ΩC1 20 µF 3 A C2 50 µF

The circuit has only DC sources. Then, we replace the capacitors with open circuits and
the inductors with short circuits.

−
+

−
9 V

+

6 Ω IL1 3 Ω IL2

6 Ω

+

VC1

−
3 A

+

VC2

−

A

Using KCL at node A we get

IL2 = IL1 + 3
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Energy Storage

Using KVL around the outside of the circuit yields

6IL1 + 3IL2 + 6IL2 = 9

We have IL1 = −1.2 A and IL2 = 1.8 A. The voltages VC1 and VC2 can be calculated
from

VC1 − 9 + 6IL1 = 0 ⇒ VC1 = 16.2 V

−VC2 + 6IL2 = 0 ⇒ VC2 = 10.8 V

The energy stored in each element is

WL1 =
1

2
(2× 10−3)(−1.2)2 = 1.44 mJ

WL2 =
1

2
(4× 10−3)(1.8)2 = 6.48 mJ

WC1 =
1

2
(20× 10−6)(16.2)2 = 2.62 mJ

WC2 =
1

2
(50× 10−6)(10.8)2 = 2.92 mJ
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Capacitors in Series

−
+

vs

C1

+
v1
−

i
C2

+
v2
−

+
vN
−

CN −
+

vs

i

Ceq

Using KVL

vs =
N∑

n=1

vn =
N∑

n=1

[
1

Cn

∫ t

t0

idτ + vn(t0)

]

=

(
N∑

n=1

1

Cn

)∫ t

t0

idτ +
N∑

n=1

vn(t0) =
1

Ceq

∫ t

t0

idτ + vs(t0)

Then

Ceq =
1

1/C1 + 1/C2 + · · ·+ 1/CN
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Capacitors in Parallel

is C1

i1

C2

i2

CN

iN
+

v

−

is

+

v

−

Ceq

Using KCL

i(t) = i1(t) + i2(t) + · · ·+ iN (t) = C1
dv

dt
+ C2

dv

dt
+ · · ·+ CN

dv

dt

=

(
N∑
i=1

Ci

)
dv

dt
= Ceq

dv

dt

Thus

Ceq = C1 + C2 + · · ·+ CN
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Inductors in Series

−
+

vs

L1

+
v1

−
i

L2

+
v2

−

+

vN

−
LN −

+
vs

i

Leq

Using KVL

vs =
N∑

n=1

vn = v1 + v2 + · · · vN

= L1
di

dt
+ L2

di

dt
+ · · ·+ LN

di

dt
= (L1 + L2 + · · ·+ LN )

di

dt

= Leq
di

dt

Then

Leq = L1 + L2 + · · ·+ LN
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Inductors in Parallel

is L1

i1

L2

i2

LN

iN+

v

−

is

+

v

−

Leq

Using KCL

is =
N∑

n=1

in =
N∑

n=1

[
1

Ln

∫ t

t0

v(τ)dτ + in(t0)

]

=

(
N∑

n=1

1

Ln

)∫ t

t0

v(τ)dτ +
N∑

n=1

in(t0)

=
1

Leq

∫ t

t0

v(τ)dτ + is(t0)

Thus

Leq =
1

1/L1 + 1/L2 + · · ·+ 1/LN 27



Inductors and Capacitors Combination

0.8 H

6µF

3µF
3 H

2 H
1µ F

2 H

3µF

We have

Ceq = 1 µF+ 18

9
µF = 3 µF

Leq = 0.8 H+
6

5
H = 2 H
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